REPORT

Tonkin+Taylor

MILLWATER SUBDIVISION ARRANS HILL PRECINCT 5 -STAGES 3B & 4

Geotechnical Completion Report

Prepared for WFH Properties Ltd Prepared by Tonkin & Taylor Ltd Date February 2020 Job Number 21854.0031/AHP5S3B+4.v2

Exceptional thinking together www.tonkintaylor.co.nz

Document Control

Title: MILLWATER SUBDIVISION ARRANS HILL PRECINCT 5 - STAGES 3B & 4, Geotechnical Completion Report						
Date	Version	Description	Prepared by:	Reviewed by:	Authorised by:	
September 2019	1	Geotechnical Completion Report	JKK	APS	APS	
February 2020	2	Geotechnical Completion Report	ЈКК	APS	APS	

Distribution:	
WFH Properties Ltd	2 copies
Woods Ltd	2 copies
Tonkin & Taylor Ltd (FILE)	1 сору

Table of contents

1	1.2 E	uction General Description of Subdivision Geological Setting	3 3 3 4
2	Earthw 2.1 (2.2 (vorks Operations Contractors and Plant Construction Programme Compaction Control	6 6 6 7
3	 3.1 3.2 3.3 3.4 	chnical Development Works Subsoil Drainage Jndercuts Palisade Wall Reinforced Earth Slopes Geogrid Reinforced Segmental Block Retaining Wall	9 9 10 10 10 11
4	Stabilit	ay Analyses	13
5	5.1 C 5.2 F 5.3 E 5.4 E 5.5 S 5.6 E 5.7 S 5.8 S 5.9 S 5.10 F 5.11 T	t Evaluation / Building Design Considerations General Post Earthworks Investigations Bearing capacity for building foundations Building Limitation Zones – RE Slopes Settlement Earthworks and Retaining walls Subsoil Drainage Stormwater Service lines Road subgrades Fopsoil Expansive soils	14 14 14 15 15 16 16 16 16 17 17
6		nent of Professional Opinion as to the Suitability of Land for Building Developmer	าt18
7	Applica	ability	25
8	Refere	nces	26

Appendix A 1:	Woods Drawings
Appendix A2:	T+T Drawings
Appendix B :	Contractors Certificates
Appendix C :	NZS 3604.2011 Expansive Soils (Extract)
Appendix D :	CSIRO – BTF18 – Foundation Maintenance and Footing Performance: A Homeowners Guide
Appendix E :	Test Results

Executive summary

Tonkin + Taylor Ltd (T+T) was engaged by WFH Properties Ltd to monitor and provide earthworks certification for the 48 No. Residential Lots contained within Stages 3B and 4 of Arrans Hill Precinct 5 at the Millwater Subdivision in Silverdale. Stages 3B and 4 comprises Residential Lots 48 to 53, 164 to 173, 196 to 212 and 216 to 230, Reserve Lot 802, and Road Lot 903 (part of Road 2 within Stage 3B and parts of Roads 1, 5, 7 and 8 within Stage 4) inclusive as shown on the Woods Final Contour As-Built Plan (Woods Ref 37504–04–03B–100–AB) in Appendix A1.

This Geotechnical Completion Report contains information required for subdivisional earthworks completion reporting, as well as outlining geotechnical constraints that need to be considered for subsequent building design and construction on each residential Lot. This report supersedes the Geotechnical Completion Report dated September 2019, with minor changes being made to the post earthworks investigation plan and hand auger logs in Appendix E.

Previous geotechnical investigation work across the subdivision was undertaken by T+T and reported in:

- 2000 and 2001 Preliminary feasibility reporting (Ref. [1] and [2]). а
- 2003 Major reconnaissance report covering land in the Silverdale North and Orewa West areas b (Ref. [3]).
- March 2013 Geotechnical Investigation Report for the North Bridge to Grand Drive (Ref. [4]). С
- d December 2015 Geotechnical Investigation Report for Arrans Hill Precinct 5 (Ref. [5]).

Woods Ltd (Woods) undertook the engineering design for these two stages and the overall subdivision.

Bulk earthworks associated with development of Stages 3B and 4 of Arrans Hill Precinct 5 were undertaken by Hick Bros Civil Contractors Ltd and commenced in February 2018 with completion by February 2019. Earthworks comprised the following:

- Stripping of vegetation, organic materials and topsoil to stockpile. а
- Installation of subsoil drains. b
- Cut to fill earthworks across the entire Stages 3B and 4 areas as shown on the Woods Cut & Fill С As-Built Plans (Woods Ref 37504-04-03B-110-AB to -112-AB) in Appendix A1.
- d Construction of 1 No. Palisade Wall (part of PW5) as shown on T+T Drawing 21854.0031-AHP5S3B&4–101 in Appendix A2.
- Construction of a 4m high geogrid reinforced segmental block wall (Screen Block Wall 6) along е the northern boundary of Lots 48 to 51 (immediately below RE 7) as shown on T+T Drawing 21854.0031-AHP5S3B&4-101 in Appendix A2.
- Construction of a 11m high, 1 in 1.5 (V:H) engineered fill batter slope (part of RE 7) along the f northern boundary of Residential Lots 48 to 53 and Reserve Lot 802 as shown on T+T Drawing 21854.0031-AHP5S3B&4-101 in Appendix A2.
- Construction of a 8m high, 1 in 2 (V:H) engineered fill batter slope (RE 5) along the southern g boundary of Residential Lots 164 to 173 as shown on T+T Drawing 21854.0031-AHP5S3B&4-101 in Appendix A2.

Civil earthworks were undertaken by JG Civil Ltd and commenced on site in February 2019 with completion by August 2019, and comprised the following:

- Minor cut to fill earthworks across parts of the site as part of final Lot development. а
- b Installation of roading and services.

Overall subdivisional soil types are moderately to highly expansive (Class M to H2), based on laboratory testing undertaken in accordance with AS 2870:2011 (Ref. [7]). Due to this classification, soils lie outside the definition of good ground within NZS 3604:2011 (Ref. [8]). Building foundations will require either specific foundation design for expansive soils or foundation design in accordance with AS 2870:2011 (Ref. [7]). Subject to geotechnical constraints outlined in Section 3, and CSIRO recommendations outlined in the Appendices relating to expansive soils foundation design and home owner maintenance, all the residential Lots within Stages 3B and 4 are considered to have a building platform area that is generally suitable for domestic residential development subject to specific geotechnical assessment and foundation design due to the presence of expansive soils and where Lots contain, or are adjacent to, land with slopes steeper than 1 in 4 (V:H).

Foundation design for residential development should proceed in accordance with Sections 6.5 to 6.11 of this report.

1 Introduction

1.1 General

Tonkin + Taylor Ltd (T+T) was engaged by WFH Properties Ltd to monitor and provide earthworks certification for the 48 No. Residential Lots contained within Stages 3B and 4 of Arrans Hill Precinct 5 at the Millwater Subdivision in Silverdale. Stages 3B and 4 comprises Residential Lots 48 to 53, 164 to 173, 196 to 212 and 216 to 230 and Road Lot 903 (part of Road 2 within Stage 3B and parts of Roads 1, 5, 7 and 8 within Stage 4) inclusive as shown on the Woods Final Surface As–Built Plan (Woods Ref 37504–04–03B-100–AB) in Appendix A1.

Previous geotechnical investigation work across the subdivision was undertaken by T+T and reported in:

- a 2000 and 2001 Preliminary feasibility reporting (Ref. [1] and [2]).
- b 2003 Major reconnaissance report covering land in the Silverdale North and Orewa West areas (Ref. [3]).
- c March 2013 Geotechnical Investigation Report for the North Bridge to Grand Drive (Ref. [4]).
- d December 2015 Geotechnical Investigation Report for Arrans Hill Precinct 5 (Ref. [5]).

The preliminary (Ref. [1], [2]) and investigation (Ref. [3], [4], [5]) reports noted the presence of existing instability comprising landsliding, soil creep and shallow slope movement across much of Arrans Hill Precinct 5. These features were proposed to be stabilised, and/or undercut and replaced with engineered fill, during development works. While these stabilisation works are required across much of Precinct 5, such works were not generally required to achieve satisfactory factors of safety against instability for the finished development of Stages 3B and 4. However, undercutting was required to enable installation of the geogrid reinforcement required within Wall 6 and the reinforced earth slopes (RE 5 and part of RE 7), as well as to ensure Wall 6 and the RE slopes were founded in competent ground.

Earthworks compaction control, in terms of minimum shear strengths and maximum air voids, was recommended, and, along with other recommendations, has been incorporated into our control of the works and, where applicable, included in completion reporting.

The scope of work covered by this geotechnical completion report includes:

- a Review of geotechnical investigation reporting for the site;
- Monitoring and certification of earthworks operations in compliance with NZS 4431:1989 (Ref. [6]), including construction of 2 No. reinforced earth slopes (RE 5 and part of RE 7);
- c Monitoring and certification of construction of 2 No. Palisade Walls (parts of PW5 and PW6);
- d Monitoring and certification of construction of 1 No. geogrid reinforced segmental block wall (Screen Block Wall 6);
- e Assessment of soils for expansive conditions in accordance with AS 2870:2011 (Ref. [7]);
- f Certification of completed Lots for residential development in accordance with NZS 3604:2011 (Ref. [8]).

Woods Ltd (Woods) undertook subdivision engineering design and civil works construction observations. As-built plans showing final contours and cut and fill depths have been prepared by Woods and are attached in Appendix A1.

1.2 Description of Subdivision

The Millwater subdivision is situated to the north of the Silverdale Township, and west of the Metro Park East reserve area, and comprises approximately 260 hectares. The subdivision is bound to the

south and west by Wainui Road, to the north by the Orewa Estuary and to the east by the Orewa Estuary and Millwater Parkway. The original site comprised a mix of farm properties and associated dwellings and existing residential developments.

The Arrans Hill Precinct 5, Stages 3B and 4 areas of the Millwater subdivision is located within what is known as Precinct 5 in the Orewa West Structure Plan.

The Arrans Hill Precinct 5 area is bound by State Highway 1 to the west, Grand Drive to the north, Arran Drive to the east, and the Orewa estuary to the south. The overall Arrans Hill Precinct 5 and Stages 3B and 4 areas are shown on T+T Drawing 21854.0031–AHP5S3B&4–100 in Appendix A2.

Pre-development gradients within the Stages 3B and 4 areas were gentle to moderately steep (1 in 3, to 1 in 15 (V:H)) with an overall fall to the north.

Post-development gradients within the Stages 3B and 4 areas generally remain gentle to moderately steep (1 in 3, to 1 in 15 (V:H)) and fall to the north. In order to form more level building platforms, steep reinforced earth slopes of between 1 in 2 and 1 in 1.5 (V:H) have been constructed as shown on T+T Drawing 21854.0031–AHP5S3B&4–101 in Appendix A2.

Stages 3B and 4 are presently accessed from the existing Arran Drive.

1.3 Geological Setting

Published geological mapping and information indicates the Arrans Hill Precinct 5 area is underlain by East Coast Bays Formation (ECBF) materials. In addition to the ECBF materials, our investigations identified the presence of alluvial and colluvial materials on site along the stream margins.

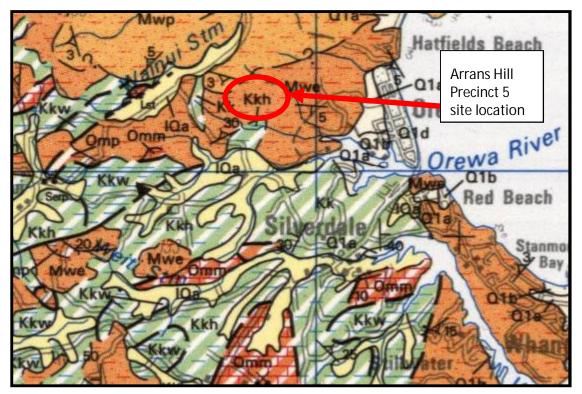


Figure 1 - Geological map of Arrans Hill Precinct 5 and Silverdale area (from Edbrooke, 2001)

Summary descriptions of geological units in the Arrans Point area (after Kermode 1991) are as follows:

a East Coast Bays Formation

Alternating sandstone and mudstone with variable volcanic content (volcanic-poor lower in the sequence and mixed volcanic content higher) and interbedded volcaniclastic grit beds. These material typically show a well-developed weathering profile of clay, silt or sand depending on the parent lithology.

b Pleistocene Age Alluvium and Colluvium

Alluvium and Colluvium are generally observed on the lower slopes, along the edges of the tidal tributaries of the Orewa River - along the southern and eastern boundary of the site. In places, it is locally discontinuous or absent.

The alluvial deposits are typically very thinly to very thickly bedded, yellow-grey to orangebrown, angular to well rounded, mixed sizes (usually graded, coarse becoming fine upwards) of mud, sand and gravel, comprising rock fragments and weathered rock residue from the hinterland. They include some beds of black, humus-rich clay and white, pumice silt.

Colluvium closely resembles the undisturbed residual soil materials, comprising a mix of clayey silts and silts, but is often of lesser strength due to the deformation and disturbance that has occurred during transportation down-slope.

Geological cross-sections through the Arrans Hill Precinct 5 Stages 3B and 4 areas, based on site investigations and observations during construction, are enclosed as Drawing Number 21854.0031–AHP5S3B&4–103 and –104 in Appendix A2.

Fill material placed across the site to form the final design profile typically comprised site-won East Coast Bays Formation materials.

2 Earthworks Operations

2.1 Contractors and Plant

Bulk earthworks were undertaken by Hick Bros Civil Construction Ltd (Hicks). Various areas of soft and/or wet materials were encountered during the works and were undercut and replaced with engineered fill. Much of this undercut material was considered suitable for re-use as engineered fill if conditioned appropriately. Accordingly, mixing of the cohesive fill materials with lime/cement to facilitate fill placement and compaction was undertaken by Hiway Stabilizers Ltd (Hiway) under Hicks' control.

Construction of the two palisade walls (parts of PW5 and PW6) and Screen Block Wall 6 was undertaken by ICB Retaining and Construction Ltd (ICB), also under Hicks' control.

Civil works construction were completed by JG Civil Ltd (JGCL).

Various earthworks equipment was used to undertake the works, comprising motor scrapers, articulated dump trucks, tractors and discs, sheepsfoot compactors, padfoot rollers, and a number of 12 to 35 tonne excavators. This plant generally carried out all construction earthworks.

Specialist contractors and plant were brought on site for pavement construction. Certification of the pavement construction is beyond the scope of this report.

2.2 Construction Programme

Subdivisional earthworks commenced from February 2018 through to February 2019 under Hicks' control. Civil earthworks and construction for the residential Lots were under JGCL's control and were undertaken progressively from February 2019 through to completion in August 2019.

Key Stages 3B and 4 earthworks components included:

- a Stripping of vegetation, organic materials and topsoil to stockpile.
- b Installation of subsoil drains.
- c Cut to fill earthworks across the entire Stages 3B and 4 areas as shown on the Woods Cut & Fill As–Built Plans (Woods Ref 37504–04–03B–110-AB to –112–AB) in Appendix A1.
- d Construction of 2 No. Palisade Walls (parts of PW5 and PW6) as shown on T+T Drawing 21854.0031–AHP5S3B&4–101 in Appendix A2.
- e Construction of a 4m high geogrid reinforced segmental block wall (Screen Block Wall 6) along the northern boundary of Lots 48 to 51 (immediately below RE 7) as shown on T+T Drawing 21854.0031–AHP5S3B&4–101 in Appendix A2.
- f Construction of a 11m high, 1 in 1.5 (V:H) engineered fill batter slope (part of RE 7) along the northern boundary of Residential Lots 48 to 53 and Reserve Lot 802 as shown on T+T Drawing 21854.0031–AHP5S3B&4–101 in Appendix A2.
- g Construction of a 8m high, 1 in 2 (V:H) engineered fill batter slope (RE 5) along the southern boundary of Residential Lots 164 to 173 as shown on T+T Drawing 21854.0031–AHP5S3B&4–101 in Appendix A2.

Key Stages 3B and 4 civil works components included:

- a Minor cut to fill earthworks across parts of the site as part of final Lot development.
- b Installation of roading and services.

The earthworks, undercuts, palisade wall, retaining wall and subsoil drainage as-built plans are included in Appendix A1 (Woods Drawings 37504–04-03B–100–AB, 37504–04-03B–110–AB to –112–AB and 37504–04-03B–120–AB), and show the earthworks undertaken across the site.

2.3 Compaction Control

Compaction control criteria, consisting of maximum allowable air voids and minimum allowable shear strengths, were used for cohesive fill control. The Technical Specification included in our Geotechnical Investigation Report (Ref. [4], [5]) included the following requirement for the subdivisional earthworks:

Minimum Shear Strength and Maximum Air Voids Method

Minimum Undrained Shear Strength (Measured by insitu vane - IANZ calibrated)

General fills:	
Average value not less than	140 kPa
Minimum single value	110 kPa
High Strength Structural fills (Undercut	s & Reinforced Earth Fill Slopes):
Average value not less than	150 kPa
Minimum single value	120 kPa
<u>Maximum Air Voids Percentage (as de</u>	fined in NZS 4402:1986)
<u>General fills:</u>	

Average value not more than	10%
Maximum single value	12%
High Strength Structural fills (Undercut	s & Reinforced Earth Fill Slopes):
Average value not more than	8%
Maximum single value	10%

The average corrected shear strength value was determined over any ten consecutive tests.

Compaction control criteria consisting of minimum allowable Clegg Impact Values and minimum allowable in–situ dry density were used for cohesionless fill control. The Technical Specification included in our Geotechnical Investigation Report (Ref. [4], [5]) included the following requirement for the subdivisional earthworks (and in particular during construction of Wall 6):

Minimum Clegg Impact Value and Minimum In Situ Dry Density Method Minimum Clegg Impact Value (Measured by Clegg Impact Hammer – IANZ calibrated)

<u>General fills:</u>	
Average value not less than	20
Minimum single value	18
Minimum In-Situ Dry Density Percenta	age (as defined in NZS 4402:1986)
Conoral fillo	

<u>General fills:</u>	
Average value not less than	9 5%
Minimum single value	90%

The average Clegg Impact value was determined over any ten consecutive tests.

Regular in situ density, strength and water content tests were carried out on the filling at, or in excess of, the frequency recommended by NZS 4431:1989 (Ref. [6]). Test results are contained in Appendix E.

Quality Control (QC) testing showed that the results for the filling were consistently meeting the required undrained shear strength, Clegg Impact value, density and air voids criteria, demonstrating that the water content of placed fill was consistently at, or close to, optimum. To the best of our knowledge, any problems encountered were rectified, where required, by close monitoring of the selection of borrow materials, discing and remixing of the available soil types and minor reworking.

3 Geotechnical Development Works

3.1 Subsoil Drainage

A network of subsoil drains has been installed across Arrans Hill Precinct 5 during bulk earthworks as part of the undercut, reinforced earth slopes and geogrid reinforced segmental block wall construction.

The subsoil drains installed within the undercut and reinforced earth slopes were excavated into the underlying in-situ soil to intercept groundwater and springs.

Following completion of the undercut excavation, SAP50 scoria drainage blankets were placed along the rear face of the undercut, and comprised the following:

- a 160mm diameter perforated Hiway grade Nexus drain pipe installed along the base of the rear of the excavation.
- b A minimum of 300mm cover of SAP50 scoria placed over the top of the Nexus pipe and across the entire rear face of the excavation, and connected into the drainage system of the overlying RE Slope and/or retaining wall.
- c Bidim A19 geotextile filter-cloth placed over the surface of the SAP50 scoria prior to placement of the reinforced soil to prevent contamination of the drainage aggregate with overlying bulk earthworks materials.

Subsoil drains installed as part of the reinforced earth slope construction comprised the following:

- a 160mm diameter perforated Hiway grade Nexus drain pipes installed along the base of the rear of the reinforced soil block.
- b A minimum of 300mm cover of SAP50 scoria placed over the top of the Nexus pipe and across the entire rear face of the reinforced soil block, to within 2.0 metres of the ground surface (at time of construction).
- c Bidim A19 geotextile filter-cloth placed over the surface of the SAP50 scoria prior to placement of the reinforced soil to prevent contamination of the drainage aggregate with overlying bulk earthworks materials.

In addition, subsoil drains were installed as part of the geogrid reinforced segmental block retaining wall construction and comprised the following:

- a 160mm diameter perforated Hiway grade Nexus drain pipes installed along the backface of the wall and base of the rear of the reinforced soil block.
- b A minimum of 300mm cover of SAP50 scoria placed over the top of the Nexus pipe and across the entire rear face of the reinforced soil block, to within 1m of the ground surface (at time of construction).
- c Bidim A19 geotextile filter-cloth placed over the surface of the SAP50 scoria prior to placement of the reinforced soil to prevent contamination of the drainage aggregate with overlying bulk earthworks materials.

The subsoil drains were either connected to the reticulated stormwater system or discharged into the swale drain along Grand Drive, as shown on the Woods Undercut And Subsoil Drain As–Built Plan (Woods Ref 37504–04–03B–120–AB) in Appendix A1 and on T+T Drawing 21854.0031–AHP5S3B&4–102 in Appendix A2.

3.2 Undercuts

Undercuts (minimum 2m deep and 5m wide) were excavated below the toe of RE 5 and RE 7 to ensure a consistent subgrade. The undercut was replaced with engineered, compacted fill, placed in accordance with the bulk earthworks specification (Section 2.3 above).

In addition, 1m deep undercuts were excavated to expose more competent soils (minimum shear strength of 75kPa) across the Residential Lots and through the road alignments in Stages 3B and 4 due to exposure of some areas of unsuitable subgrade materials (i.e. soft and wet). The undercut was replaced with engineered, compacted fill, placed in accordance with the bulk earthworks specification (Section 2.3 above).

Where required, the subsoil drains installed within the undercut are as detailed in Section 3.1.

The extent of the undercut areas is shown on the Woods Undercut And Subsoil Drain As–Built Plan (Woods Ref 37504–04–03B–120–AB) in Appendix A1.

3.3 Palisade Wall

Two Palisade Walls (PW5 and PW6) were identified as being required along a section of RE 7 (i.e. across Lots 52 and 53 for PW5; within Lot 48 for PW6) to provide satisfactory factors of safety against instability for the finished development of Stage 4.

Palisade Wall 5 was constructed within Stage 4 during the bulk earthworks in the location shown on the T+T Drawing 21854.0031–AHP5S3B&4–101, included in Appendix A2. Palisade Wall 5 comprises 6m long 250UC73 steel piles installed at 1.8m centres encased in 600mm diameter concreted holes. Drilling for the palisade wall pile bores was inspected and logged by an Engineering Geologist to check that the base of the piles had been extended sufficiently to the target depth.

Ground conditions exposed during construction of Palisade Walls 5 and 6 were generally as anticipated from the design stage of the development. The slope stability analysis results from the original design phase are discussed in Section 4.

3.4 Reinforced Earth Slopes

2 No. reinforced earth slopes (i.e. RE 5 and part of RE 7) were constructed during the bulk earthworks period within Stage 4.

The reinforced earth slopes comprise horizontally laid biaxial geogrids placed at 0.5m (vertical) intervals within the engineered, compacted earth fill. The grids extend up to within 1.5 (vertical) metres of the slope crest. They have been placed at various lengths, starting at the face of the slope.

Typical cross-sections of the reinforced earth slopes are shown on T+T Drawings 21854.0031– AHP5S3B&4–113 to –115 in Appendix A2.

The placement of the geogrid allows steeper finished gradients than is possible with bulk fills, and will minimise risk of instability across the face of the slope, particularly where finished gradients across the slopes are up to 1 in 1.5 (V:H).

Construction of the slope comprised the following:

- a placement and compaction of fill, or excavation within natural ground, to the required levels;
- b placement of the geogrid, ensuring that the grid is held tightly in place;
- c spreading of fill across the surface of the geogrid with lightweight plant;
- d compaction and placement of further fill up to the level of the next grid layer.

The fill was placed and compacted beyond the limit of the final slope face and then trimmed back to ensure full compaction of the slope face was achieved.

As noted in Section 3.1, a drainage blanket was installed at the rear of the reinforced block of soil and comprises a minimum of 300mm thickness of SAP50 scoria, covered in Bidim A19 geotextile filtercloth and a cap of engineered cohesive fill 2m in thickness. A 160mm diameter perforated Hiway grade Nexus drain pipe installed at the base of the drainage blanket provides regular discharge outlets for any groundwater captured in the drainage blanket. These drainage pipes are connected into the reticulated stormwater system (RE 5) or into the swale drain below Grand Drive (RE 7).

The slopes have been designed to accommodate surcharge of up to 10kPa distributed load at the crest of the slopes.

The slope faces will be subject to a planting covenant and Building Limitation Zone preventing construction within this area. Protection of the geogrids from damage also precludes construction across the slope faces and immediately adjacent to the slope crest. Accordingly, a Building Limitation Zone has been applied across the slopes (See Sections 5.4 and 6.7).

3.5 Geogrid Reinforced Segmental Block Retaining Wall

A geogrid reinforced segmental block wall (Screen Block Wall 06) was constructed during bulk earthworks within Stage 4. A section of RE 7 (discussed in Section 3.4) was constructed immediately above Screen Block Wall 6.

Screen Block Wall 06 comprises uniaxial High Density Polyethylene (HDPE) geogrids placed at a maximum of 1.0m (vertical) intervals within the well compacted engineered fill (i.e. hardfill and cohesive fill), placed in accordance with the bulk earthworks specification (Section 2.3 above). The grids for Screen Block Wall 6 extend up to the toe of RE 7 immediately above.

Construction of Screen Block Wall 6 comprised the following:

- a placement and compaction of fill to the required levels;
- b placement of the Screen Block units, including starter sections of geogrids cast into the blocks at the appropriate levels;
- c placement of the geogrid and connection to the starter sections using a "Bodkin" joint, ensuring that the grid is held tightly in place;
- d spreading of fill across the surface of the geogrid with lightweight plant;
- e compaction and placement of further fill up to the level of the next grid layer.

Typical cross–sections of the geogrid reinforced segmental block walls are shown on T+T Drawings 21854.0031– AHP5S3B&4–111 and -112 in Appendix A2.

As noted in Section 3.1, a drainage blanket was installed at the rear of the reinforced block of soil which comprises a minimum of 300mm thickness of SAP50 scoria, covered in Bidim A19 geotextile filtercloth. A 160mm diameter perforated Hiway grade Nexus drain pipe installed along the backface of the wall and base of the rear of the reinforced soil block provides a discharge outlet for any groundwater captured in the drainage blanket. The drainage pipes from behind the wall discharges into the swale drain along Grand Drive, as shown on the Woods Undercut And Subsoil Drain As–Built Plan (Woods Ref 37504–04–03B–120–AB) in Appendix A1 and on T+T Drawing 21854.0031–AHP5S3B&4–102 in Appendix A2.

Screen Block Wall 6 has been designed to accommodate construction of the reinforced earth slope (discussed in Section 3.4) present immediately above, and development immediately behind/above the wall is likely to be precluded by Council planning rules.

Certification (Producer Statement PS4 – Construction Review) of this wall in accordance with the approved Building Consent (BCO–10270225) is to be supplied under a separate cover letter.

4 Stability Analyses

As noted in Section 1, slope stability analyses undertaken during the investigation stage of the project identified that shear keys were not required to achieve satisfactory factors of safety against slope instability for the finished development of Stages 3B and 4.

Observations and monitoring were undertaken during bulk earthworks construction to confirm that the ground conditions exposed were consistent with the assumptions made in the stability analyses.

We are satisfied that the design stability analyses remain valid for the completed works on the following basis:

- a the exposed ground conditions generally conform to those assumed for design;
- b the as-built profiles match design levels;
- c the earthworks monitoring shows compliance with specified criteria, upon which fill properties have been based.

5 Project Evaluation / Building Design Considerations

5.1 General

Ground conditions within the Arrans Hill Precinct 5 Stages 3B and 4 areas straddle a range of "design conditions" including cut ground, filled ground, expansive soils and constructed slopes up to 1 in 1.5 (V:H). The following sections set out relevant geotechnical design recommendations.

5.2 Post Earthworks Investigations

Following the completion of earthworks operations, T+T have undertaken supplementary fieldwork to confirm the consistency of the natural subsoils and engineered fill. From the investigations, we confirm that the subsoils are considered to have a geotechnical ultimate bearing capacity of 300kPa, as required by NZS 3604:2011 (Ref. [8]). This corresponds to a factored (Ultimate Limit State) bearing capacity of 150kPa and working (Serviceability Limit State) bearing capacity of 100kPa. Associated borehole logs and site plan (T+T Drawing 21854.0031–AHP5S3B&4–121) are attached in Appendix E.

5.3 Bearing capacity for building foundations

From the investigation described in Section 5.2, we consider that all filled and natural ground within the site is assessed as generally having a geotechnical ultimate bearing capacity of 300kPa, as required by NZS 3604:2011 (Ref. [8]). This corresponds to a factored (Ultimate Limit State) bearing capacity of 150kPa and working (Serviceability Limit State) bearing capacity of 100kPa.

Due to the presence of expansive soils, foundation conditions fall outside the definition of "good ground" contained in NZS 3604:2011 (Ref. [8]). In terms of AS 2870:2011 (Ref. [7]), the soils present are considered to lie within Site Class M to H2 (moderately to highly expansive) with characteristic surface movements anticipated to be in the range of 20mm to 75mm. Due allowance should be made for expansive soils, as discussed in Section 5.12.

Where a geotechnical ultimate bearing capacity greater than 300kPa is required to support any dwelling constructed outside the scope of NZS 3604:2011 (Ref. [8]), further specific site investigation and design of foundations will be required.

5.4 Building Limitation Zones – RE Slopes

Identified steep slopes in the Stages 3B and 4 areas have been constructed as reinforced earth fill structures with face gradients of between 1 in 1.5 and 1 in 2 (V:H). They are located in Lots 48 to 53 and Lots 164 to 173. Construction within the flatter parts of these Lots is intended, and a Building Limitation Zone (i.e. "No Build Zone") has been developed across the steeper sections of the Lots to ensure that the reinforcement of the slopes is not detrimentally affected by future development. The extent of the Building Limitation Zones associated with the RE Slopes are shown on T+T Drawing 21854.0031–AHP5S3B&4–120 (Building Limitation Plan) in Appendix A2. Excavation, fill placement and/or construction within this zone is not permitted.

Vegetation on slopes that are 1 in 4 (V:H) or steeper is recommended to reduce the potential for shallow slope instability and to minimise surface erosion. Where gradients are 1 in 4 (V:H) or steeper, there is potential for minor shallow creep of the topsoil layer. However, such creep is considered unlikely to detrimentally affect the global stability of the slope.

Where slopes exceed gradients of 1 in 2 (V:H), "Enkamat" or "Geocells" have been anchored to the face of the RE Slopes to function as a protective reinforcing layer for the topsoil and plant root system. This is shown on the Woods Reinforced Earth Batter & Slope Stabilisation Plan (Woods Ref 37504–04–03B–140–AB and 37504–04–03B–141–AB) in Appendix A1.

5.5 Settlement

From our inspections during earthworks operations, the results of compaction quality control testing, and post construction survey monitoring, we consider that differential settlement induced by self-weight of engineered fill should now be largely complete. Further settlements should be within normally accepted design tolerances of 25mm, as outlined in NZS 3604:2011 (Ref. [8]), with respect to conventional building development.

Monitoring points were installed across the top of the RE 5 and RE 7 following completion of the construction works. The monitoring commenced in May 2019 and June 2018 for RE 5 and RE 7, respectively, and has continued through until August 2019. The monitoring shows that while settlements of up to 14mm have occurred, there has been negligible movement since June 2019 on either RE 5 or RE 7.

In order to minimise the risk of ground settlements exceeding 25mm, NZS 3604:2011 (Ref. [8]) allows a maximum fill surcharge of 600mm over the building platform during future development. Filling in excess of this thickness should be subject to specific foundation design and assessment.

5.6 Earthworks and Retaining walls

All earthworks and retaining wall construction on the lots should comply with all requirements of the Resource Management Act (1991), the Building Act (2004) and the Auckland Unitary Plan.

All temporary and permanent cuts exceeding 1.5m in height, including cuts to be retained, should be specifically investigated by a suitably qualified geotechnical professional to confirm that the stability of the subject (or adjacent) Lot is not detrimentally affected. Retaining walls greater than 1.5m in height should be specifically investigated and designed by a Chartered Professional Engineer practising in geotechnical engineering.

Fill greater than 0.6m thick, and all fill proposed to be beneath structures (including hardstanding areas), should meet the requirements of NZS 4431:1989 – Code of Practice for Earthfill for Residential Development, and should include adequate stripping, benching, and underdrainage.

All fills greater than 0.6m thickness should be investigated and designed by a Chartered Professional Engineer practising in geotechnical engineering or by an experienced Engineering Geologist. The Engineer should consider the effect of the earthworks on global stability, i.e. the effect of the works on the stability of the lot and on the stability adjacent lots.

Due to the relatively shallow grades across most of the Stages 3B and 4 Lots, it is not anticipated that significant retaining walls will be required. However, if walls are required, then retaining wall design will be dependent on the site specific requirements. For preliminary retaining wall design, we recommend the use of the following geotechnical design parameters for the retained soils:

- $\gamma = 18 \text{ kN/m}^3$,
- c' = 0 kPa,
- Ø' = 30°,
- K_a = 0.30,
- K_p = 3.33,

We recommend an undrained shear strength, "Su", of 50kPa for the embedment soil (subject to confirmation during construction).

These values are based on level ground above and below the wall and will require appropriate amendment to allow for slope, traffic and other surcharges or toe slopes and the specific lot geometry and development requirements, as applicable.

All retaining walls should include a layer of free draining granular fill (with geotextile over the top) immediately behind the wall covered with a 0.3m thick (minimum) compacted clay fill cap, with intercepted groundwater seepage piped into the reticulated stormwater system.

The existing geogrid reinforced segmental block wall constructed within the Stage 4 area is shown on the Woods Slope As-Built Plans (Woods Ref 37504–04–03B–140–AB) in Appendix A1. This wall has been designed to accommodate construction of the reinforced earth slope (discussed in Section 3.4) present immediately above, and development immediately behind/above the wall is likely to be precluded by Council planning rules.

5.7 Subsoil Drainage

Following undercutting during bulk earthworks, groundwater subsoil drainage was installed at select locations using Nexus subsoil drains covered in scoria and geotextile cloth to permanently handle ground water flows.

The extent of the subsoil drainage systems are shown on the Woods Undercut And Subsoil Drain As– Built Plan (Woods Ref 37504–04–03B–120–AB) in Appendix A1, and on T+T Drawing 21854.0031– AHP5S3B&4–102 in Appendix A2.

This subsoil drainage system is relatively deep and located so that it is unlikely to be encountered during future residential site development, and is expected to be maintenance free. Any deep excavations should take account of the presence of these subsoil drains nonetheless. If a drain is encountered, damaged, or identified as defective, repairs should be observed by a Chartered Professional (Geotechnical) Engineer familiar with this report, and notified to Auckland Council.

5.8 Stormwater

Public stormwater services have been installed within Arrans Hill Precinct 5, Stages 3B and 4. Stormwater and runoff from roofs, decks and paved areas, together with discharges from future retaining wall drains and other subsoil drainage must be connected directly into the public stormwater drainage network.

5.9 Service lines

Trench backfill has been compacted to minimise potential for future settlements. However, where building envelopes lie adjacent to or across service lines, all foundations should extend and be founded below the 45 degree zone of influence line from pipe inverts. This requirement is to avoid excessive pipe surcharges, and to allow for future maintenance of the system without detrimentally affecting adjacent structures. Subject to approval from Auckland Council, foundations may extend and bridge over service lines provided specific foundation design is undertaken.

A copy of the Stormwater and Wastewater As–Built Plans (Woods Ref 37504–04–03B–300–AB to – 303–AB and –400–AB to –403–AB) are included in Appendix A1.

5.10 Road subgrades

Based on the fill monitoring and site observations during development, filled and natural ground within the road and vehicle access Lots is considered generally suitable for the proposed residential pavements. Subgrade strength testing was carried out following excavation to formation levels along the road alignments. These subgrade test results were passed on to Woods for use in their pavement

design. All road subgrades have been lime and cement stabilised to assist in pavement strengths, and to minimise the impact of expansive soils on road pavements.

For future road construction in other parts of the Arrans Hill Precinct 5, Stages 3B and 4 development, within natural ground, a design CBR of 2% is considered appropriate while, within engineered fill areas, a design CBR of 7% is appropriate.

5.11 Topsoil

Following completion of topsoil spreading and grassing, topsoil depths were measured in a representative number of the Lots and these are shown on T+T Drawing 21854.0031–AHP5S3B&4–122 attached in Appendix E. Due to variations in placement depths and earth worked surface levels, topsoil depths may vary from those recorded.

5.12 Expansive soils

Expansive soils (or "reactive soils" using Australian terminology) are clay soils that undergo appreciable volume change upon changes in moisture content. The reactivity and the typical range of movement that could be expected from soils underlying any given building site depend on the amount of clay present, clay mineral type, and proportion, depth and distribution of clay throughout the soil profile. Moisture changes tend to occur slowly in clays and produce swelling upon wetting and shrinkage upon drying.

Apart from seasonal moisture changes (wet winters / dry summers) other factors that can influence soil moisture content include:

- a Influence of garden watering and site drainage;
- b The presence of large trees (especially fast growing Australian species such as eucalyptus) close to building envelopes, and;
- c Initial soil moisture conditions at construction time.

Visually, the surfaces of expansive soils are noted for developing extensive cracking during dry periods (especially late summer through autumn in Auckland) and can be locally identified by this feature when sites are excavated and left for a week or two to dry out. Further information on expansive soils is given in Appendices C and D of this report.

In order to assess for the presence of expansive soils within these stages of the development, representative soil samples were retrieved from near surface strata and tested by Geotechnics Ltd to determine soil shrinkage characteristics in accordance with AS 1289.7.1.1.

Based on the laboratory results (attached in Appendix E), the foundation soils on these stages of the subdivision lie outside the definition of 'good ground' as outlined in NZS 3604:2011 (Ref. [8]).

In terms of AS 2870:2011 (Ref. [7]), the soils present are considered to lie within Site Class M to H2 (moderately to highly expansive) with characteristic surface movements anticipated to be in the range of 20mm to 75mm.

Accordingly, building foundations on this stage of the subdivision will need to be subject to specific foundation design by a Chartered Professional Engineer familiar with the contents of this report and responsible for design of structural elements (including foundations) of the building. Reference should be made to AS 2870:2011 (Ref. [7]) for assistance.

6 Statement of Professional Opinion as to the Suitability of Land for Building Development

I, Mr A.P. Stiles of Tonkin + Taylor Ltd, P O Box 5271, Wellesley St, Auckland, hereby confirm that:

- 6.1 I am a Chartered Professional Engineer experienced in the field of geotechnical engineering and an authorised representative of Tonkin + Taylor who was retained by WFH Properties Ltd as the Geotechnical Engineer on Arrans Hill Precinct 5 Stages 3B and 4 (comprising Residential Lots 48 to 53, 164 to 173, 196 to 212 and 216 to 230, Reserve Lot 802, and Road Lot 903 inclusive) of the Millwater Residential Subdivision Development off Arran Drive in Silverdale. Inspection and observation of the works have been carried out during construction by either myself or staff acting under my direction.
- 6.2 The extents of investigations are described in Tonkin + Taylor Ltd Geotechnical Investigation Report for Arrans Hill Precinct 5 Ref. No. 21854.0031 dated December 2015. The conclusions and recommendations of those documents have been re-evaluated in the preparation of this report. Details of all earthworks control tests performed are enclosed (Appendix E).
- 6.3 The Contractor has confirmed that the work undertaken has been completed in accordance with the drawings, specifications and any variations issued and is consistent with the inspections and observations carried out by Tonkin + Taylor Ltd. Complete Construction Certificates have been provided by the Contractors and are presented in Appendix B. Tonkin + Taylor Ltd accepts no liability for any errors or omissions represented by those documents.
- 6.4 On the basis of our observations and inspections together with the information supplied by others, including the Contractor's Construction Certificates, it is my professional opinion, not to be construed as a guarantee that:
 - 6.4.1 The earth fills shown on the attached Woods drawings, Project No 37504, Millwater, Arrans Hill Precinct 5 Stages 3B and 4, Drawing Numbers 37504–04–03B–100–AB, – 110–AB to –112–AB and –120–AB, have been generally placed in compliance with NZS 4431:1989 (Ref. [6]).
 - 6.4.2 The completed earthworks give due regard to land slope and foundation stability considerations.
- 6.5 For Lots 48 to 53, 167 to 173, 196 to 212, 216 to 218, 222 to 224 and 228 to 230 inclusive:
 - 6.5.1 Foundation design

The filled and natural ground within residential Lot boundaries is considered generally suitable for the erection thereon of light timber framed, flexibly clad residential buildings subject to clauses 6.5.2 to 6.5.6.

6.5.2 Bearing capacity

Foundation design for these Lots should limit geotechnical ultimate bearing capacity to 300kPa (factored (ULS) 150kPa, working (SLS) 100kPa). This is as specified in NZS 3604:2011 (Ref. [8]).

6.5.3 Expansive soils

Due to the presence of expansive clay soils, foundation soils lie outside the definition of 'good ground' in NZS 3604:2011 (Ref. [8]). Soils are considered to lie in Site Class M (moderately expansive) as defined in AS 2870:2011 (Ref. [7]) with anticipated characteristic surface ground movements of 20mm to 40mm. Clause 6.5.3.1 of this

Geotechnical Completion Report may be used for expansive soil foundation design on this subdivision:

6.5.3.1 Specific foundation design for expansive soils

Specific foundation design should be undertaken by a Chartered Professional Engineer familiar with the contents of this report and responsible for design of structural elements (including foundations) of the building.

The minimum specific design requirements set for expansive soils within this clause are:

- i) Minimum foundation embedment of 600mm following topsoil removal and benching of building platform areas to finished ground levels;
- ii) Four bar steel reinforcing cages should be used;
- iii) For buildings having brittle exterior cladding, for example brick veneer, stucco plaster, solid plaster, block work, styrofoam type cladding or sprayed plaster over harditex systems etc, the potential effects of seasonal ground movements need to be considered by the building designer.

The above minimum requirements within this clause may be superceded if individual engineers are able to demonstrate their specific design solutions are applicable to site soil conditions to the satisfaction of Auckland Council. Specific design may be undertaken by first principles or by reference to AS 2870:2011 (Ref. [7]), Section 4 and related documents.

6.5.4 Floor Slab Construction

Slab on grade construction is expected to be relatively straightforward across the subdivision, but problems can occur with slab construction on shrink/swell sensitive soils. In soils which become desiccated in summer, subsequent capillary moisture rise may cause dry soils to wet up and swell, causing slab uplift and building distress. Alternatively, construction during winter may result in subgrade soils with high moisture contents drying out through summer, with subsequent soil shrinkage and possible building deformation.

The structural engineer should take likely construction timeframes into account and confirm that their design and construction methodologies will accommodate the soil shrinkage or swelling that may occur.

The Contractor should ensure that the ground beneath the floor slab areas is suitably conditioned to ensure that the subgrade is neither too dry nor too wet prior to hardfill placement and concrete pouring to avoid undue shrink or swell movements.

6.5.5 Building maintenance - Owners responsibility

The owner is responsible for maintenance of the building and site and should be familiar with the performance and maintenance requirements set out in CSIRO sheet BTF18 Foundation Maintenance and Footing Performance: A Home Owners Guide. A copy of this sheet is included in Appendix D.

6.5.6 Retaining walls / Earthworks

No earth cuts and/or retaining wall construction in excess of 1.5 metres height, and no earthworks involving fills in excess of 600mm depth, or fill below the influence zone of foundations, should take place on these Lots unless endorsed by a suitable design undertaken by a Chartered Professional (Geotechnical) Engineer familiar with the contents of this report and responsible for design of structural elements of the building.

Development within Lots 48 to 53 and 167 to 173 should comply with the Building Limitation Zones set to protect RE Slopes 5 and 7.

- 6.6 For Lots 165 and 166, 219 to 221 and 225 to 227 inclusive:
 - 6.6.1 Foundation design

The filled and natural ground within residential Lot boundaries is considered generally suitable for the erection thereon of light timber framed, flexibly clad residential buildings subject to clauses 6.6.2 to 6.6.6.

6.6.2 Bearing capacity

Foundation design for these Lots should limit geotechnical ultimate bearing capacity to 300kPa (factored (ULS) 150kPa, working (SLS) 100kPa). This is as specified in NZS 3604:2011 (Ref. [8]).

6.6.3 Expansive soils

Due to the presence of expansive clay soils, foundation soils lie outside the definition of 'good ground' in NZS 3604:2011 (Ref. [8]). Soils are considered to lie in Site Class H1 (highly expansive) as defined in AS 2870:2011 (Ref. [7]) with anticipated characteristic surface ground movements of 40mm to 60mm. Clause 6.6.3.1 of this Geotechnical Completion Report may be used for expansive soil foundation design on this subdivision:

6.6.3.1 Specific foundation design for expansive soils

Specific foundation design should be undertaken by a Chartered Professional Engineer familiar with the contents of this report and responsible for design of structural elements (including foundations) of the building.

The minimum specific design requirements set for expansive soils within this clause are:

- i) Minimum foundation embedment of 750mm following topsoil removal and benching of building platform areas to finished ground levels;
- ii) Four bar steel reinforcing cages should be used;
- iii) For buildings having brittle exterior cladding, for example brick veneer, stucco plaster, solid plaster, block work, styrofoam type cladding or sprayed plaster over harditex systems etc, the potential effects of seasonal ground movements need to be considered by the building designer.

The above minimum requirements within this clause may be superceded if individual engineers are able to demonstrate their specific design solutions are applicable to site soil conditions to the satisfaction of Auckland Council. Specific design may be undertaken by first principles or by reference to AS 2870:2011 (Ref. [7]), Section 4 and related documents.

6.6.4 Floor Slab Construction

Slab on grade construction is expected to be relatively straightforward across the subdivision, but problems can occur with slab construction on shrink/swell sensitive soils. In soils which become desiccated in summer, subsequent capillary moisture rise may cause dry soils to wet up and swell, causing slab uplift and building distress. Alternatively, construction during winter may result in subgrade soils with high moisture contents drying out through summer, with subsequent soil shrinkage and possible building deformation.

The structural engineer should take likely construction timeframes into account and confirm that their design and construction methodologies will accommodate the soil shrinkage or swelling that may occur.

The Contractor should ensure that the ground beneath the floor slab areas is suitably conditioned to ensure that the subgrade is neither too dry nor too wet prior to hardfill placement and concrete pouring to avoid undue shrink or swell movements.

6.6.5 Building maintenance - Owners responsibility

The owner is responsible for maintenance of the building and site and should be familiar with the performance and maintenance requirements set out in CSIRO sheet BTF18 Foundation Maintenance and Footing Performance: A Home Owners Guide. A copy of this sheet is included in Appendix D.

6.6.6 Retaining walls / Earthworks

No earth cuts and/or retaining wall construction in excess of 1.5 metres height, and no earthworks involving fills in excess of 600mm depth, or fill below the influence zone of foundations, should take place on these Lots unless endorsed by a suitable design undertaken by a Chartered Professional (Geotechnical) Engineer familiar with the contents of this report and responsible for design of structural elements of the building.

Development within Lots 164 to 166 should comply with the Building Limitation Zones set to protect RE Slope 5.

6.7 For Lot 164:

6.7.1 Foundation design

The filled and natural ground within the residential Lot boundary is considered generally suitable for the erection thereon of light timber framed, flexibly clad residential buildings subject to clauses 6.7.2 to 6.7.6.

6.7.2 Bearing capacity

Foundation design for this Lot should limit geotechnical ultimate bearing capacity to 300kPa (factored (ULS) 150kPa, working (SLS) 100kPa). This is as specified in NZS 3604:2011 (Ref. [8]).

6.7.3 Expansive soils

Due to the presence of expansive clay soils, foundation soils lie outside the definition of 'good ground' in NZS 3604:2011 (Ref. [8]). Soils are considered to lie in Site Class

H2 (highly expansive) as defined in AS 2870:2011 (Ref. [7]) with anticipated characteristic surface ground movements of 60mm to 75mm. Clause 6.7.3.1 of this Geotechnical Completion Report may be used for expansive soil foundation design on this subdivision:

6.7.3.1 Specific foundation design for expansive soils

Specific foundation design should be undertaken by a Chartered Professional Engineer familiar with the contents of this report and responsible for design of structural elements (including foundations) of the building.

The minimum specific design requirements set for expansive soils within this clause are:

- iv) Minimum foundation embedment of 900mm following topsoil removal and benching of building platform areas to finished ground levels;
- v) Four bar steel reinforcing cages should be used;
- vi) For buildings having brittle exterior cladding, for example brick veneer, stucco plaster, solid plaster, block work, styrofoam type cladding or sprayed plaster over harditex systems etc, the potential effects of seasonal ground movements need to be considered by the building designer.

The above minimum requirements within this clause may be superceded if individual engineers are able to demonstrate their specific design solutions are applicable to site soil conditions to the satisfaction of Auckland Council. Specific design may be undertaken by first principles or by reference to AS 2870:2011 (Ref. [7]), Section 4 and related documents.

6.7.4 Floor Slab Construction

Slab on grade construction is expected to be relatively straightforward across the subdivision, but problems can occur with slab construction on shrink/swell sensitive soils. In soils which become desiccated in summer, subsequent capillary moisture rise may cause dry soils to wet up and swell, causing slab uplift and building distress. Alternatively, construction during winter may result in subgrade soils with high moisture contents drying out through summer, with subsequent soil shrinkage and possible building deformation.

The structural engineer should take likely construction timeframes into account and confirm that their design and construction methodologies will accommodate the soil shrinkage or swelling that may occur.

The Contractor should ensure that the ground beneath the floor slab areas is suitably conditioned to ensure that the subgrade is neither too dry nor too wet prior to hardfill placement and concrete pouring to avoid undue shrink or swell movements.

6.7.5 Building maintenance - Owners responsibility

The owner is responsible for maintenance of the building and site and should be familiar with the performance and maintenance requirements set out in CSIRO sheet BTF18 Foundation Maintenance and Footing Performance: A Home Owners Guide. A copy of this sheet is included in Appendix D.

6.7.6 Retaining walls / Earthworks

No earth cuts and/or retaining wall construction in excess of 1.5 metres height, and no earthworks involving fills in excess of 600mm depth, or fill below the influence zone of foundations, should take place on these Lots unless endorsed by a suitable design undertaken by a Chartered Professional (Geotechnical) Engineer familiar with the contents of this report and responsible for design of structural elements of the building.

Development within this Lot should comply with the Building Limitation Zones set to protect RE Slope 5.

- 6.8 For Lots 48 to 53 and 164 to 173 inclusive:
 - 6.8.1 These Lots contain a "Building Limitation Zone" relating to the reinforced earth slopes which forms the 1 in 1.5 to 1 in 2 (V:H) slopes along the Lot boundaries. The Building Limitation Zone is shown on T+T Drawing 21854.0031–AHP5S3B&4–120 in Appendix A2. Excavation, filling and/or construction within this zone is not to be undertaken, to ensure stability of the slopes is not compromised.
 - 6.8.2 The presence of geogrids within the reinforced earth slopes is brought to the attention of future building and services designers. The topmost grid is located between 1 to 2 metres below the surface at the top of the slope, and does not generally extend more than 2 metres back from the crest of the slope. It is not expected that the grids will be encountered during future development of this Lot, however, the presence of the grids should be recognized. Any exposure and/or damage and subsequent repair to the grids during any future development must be observed and certified by a Chartered Professional Engineer (Geotechnical) familiar with the contents of this report.

Design of the reinforced earth slopes have assumed a maximum distributed load of 10kPa (dead plus live loads) up to the edge of the Building Limitation Zone.

- 6.8.3 Any cut or fill walls greater than 1.5m retained height, or of any height within 2m of the Building Limitation Zone shown on T+T Drawing 21854.0031–AHP5S3B&4–120 in Appendix A2, will require a geotechnical assessment, as a minimum, to ensure stability of the subject or adjacent Lot is not detrimentally affected.
- 6.8.4 Development outside of the Building Limitation Zone may proceed in accordance with the recommendations outlined in Sections 6.5 and 6.6.
- 6.9 Underfill (Subsoil) drainage

Underfill (Subsoil) drains have been installed during subdivisional development in the locations shown on the Woods Undercut And Subsoil Drain As–Built Plan (Woods Ref 37504–04–03B–120–AB) in Appendix A1, and on T+T Drawing 21854.0031–AHP5S3B&4–102 in Appendix A2. These drains are considered to be maintenance free. This drainage system is relatively deep and located so that it is unlikely to be encountered during future residential site development. Although future works are unlikely to encounter the drains, their location should be considered prior to designing deep foundations and, if damaged, repairs should be observed by a Chartered Professional (Geotechnical) Engineer familiar with this report, and notified to Auckland Council.

6.10 Stormwater and Sanitary Sewer Lines

Where building envelopes lie adjacent to or across service lines, all foundations should extend and be founded below the 45 degree zone of influence line extending from pipe inverts. This

requirement is to avoid excessive pipe surcharges, and to allow for future maintenance of the system without detrimentally affecting adjacent structures. Subject to approval from Auckland Council, foundations may extend and bridge over service lines provided specific foundation design is undertaken. A copy of the stormwater and sanitary sewer as-built plans are included in Appendix A1.

6.11 Road and Access Lots

Based on the fill monitoring and site observations undertaken during site development, the filled and natural ground within Arrans Hill Precinct 5 Stages 3B and 4 is considered generally suitable for residential road and accessway construction. Scala penetrometer testing should be undertaken when road subgrades have been prepared to confirm subgrade strengths. Subject to such subgrade testing, for future road construction in other parts of the Stages 3B and 4 development, within natural ground, a design CBR of 2% is considered appropriate, while within engineered fill areas, a design CBR of 7% is appropriate.

6.12 Unexpected ground conditions

Our assessment is based on interpolation between borehole positions, site observations and periodic earthworks control visits. Local variations in ground conditions may occur. Although unlikely, unfavourable ground conditions may be encountered during site benching and footing excavations. It is important that we be contacted in this eventuality, or in the event that any variation in subsoil conditions from those described in the report are found. Design assistance is available as required to accommodate any unforeseen ground conditions present.

This suitability statement relates to the general suitability of the site; it does not remove the need for specific site investigation, design and inspection as required by the Building Code, NZS 3604:2011 and NZS 4431:1989.

7 Applicability

This report has been prepared for the benefit of WFH Properties Ltd with respect to the particular brief given to us and it may not be relied upon in other contexts or for any other purpose without our prior review and agreement.

It does not remove the necessity for the normal inspection of foundation conditions at the time of erection of any dwelling, especially in cases where concrete blockwork and/or brick veneer or stucco plaster buildings are sited partly on fill or partly on natural ground, or where they are entirely sited on filling whose depth changes significantly across the building platform.

Tonkin & Taylor Ltd

Report prepared by:

Authorised for Tonkin & Taylor Ltd by:

Jaron Kelly

.....

Jason Kelly

Engineering Geologist

Andrew Stiles

Project Director

JKK

t:\auckland\projects\21854\21854.0031 - arrans hill p5\gcr\stage 3b and stage 4\jkk.28022020.ahp5s3b+4-gcr.docx

8 References

- [1] Tonkin & Taylor Ltd., October 2001. Stoney Block, T+T Ref. 18214.
- [2] Tonkin & Taylor Ltd., May 2001. *Silverdale Blocks, Silverdale, Geotechnical Issues Future Medium Density Development*, T+T Ref. 18213.
- [3] Tonkin & Taylor Ltd., November 2003. *Silverdale North and Orewa West Blocks, Silverdale, Geotechnical Issues Future Medium Density Development*, T+T Ref. 20914.
- [4] Tonkin & Taylor Ltd., March 2013. *Millwater North South Link, North Bridge to Grand Drive, Geotechnical Investigation Report*, T+T Ref. 21854.012.
- [5] Tonkin & Taylor Ltd., December 2015. *Millwater Subdivision Arrans Hill Precinct 5 Geotechnical Investigation Report*, T+T Ref. 21854.0031.
- [6] New Zealand Standards, 1989. NZS 4431:1989 Code of Practice for Earth Fill for Residential Development.
- [7] Standards Australia, 2011. AS 2870:2011 Residential slabs and footings.
- [8] New Zealand Standards, 2011. NZS 3604:2011 Timber Framed Buildings.

Appendix A1: Woods Drawings

- 37504-04-03B-100-AB Final Contour As–Built Plan -Cut & Fill As-Built - Original to Lowest Surface 37504-04-03B-110-AB . Cut & Fill As-Built - Lowest to Final Surface 37504-04-03B-111-AB . Cut & Fill As-Built - Original to Final Surface 37504-04-03B-112-AB . Undercut And Subsoil Drain As-Built Plan 37504-04-03B-120-AB . Reinforced Earth Batter & Slope Stabilisation 37504-04-03B-140-AB . Plan 37503-04-03B-300-AB to -303-AB Stormwater As-Built Plans . 37503-04-03B-400-AB to -403-AB Wastewater As-Built Plans .
- 37504–04–03B–600–AB to –602–AB Water Main As–Built Plans

COUNCIL:

CLIENT:

MILLWATER - ARRAN HILL STAGE 4 & 3B ASBUILTS DRAWINGS

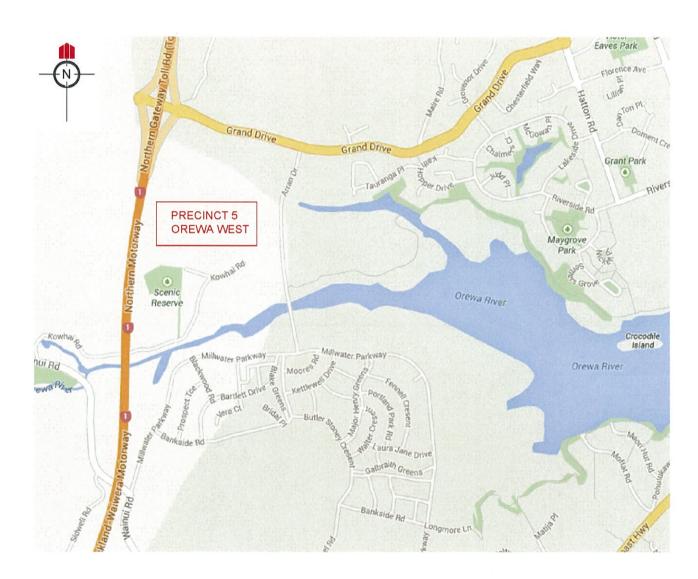
August 2019

DISCLAIMER THE INFORMATION PORTHAYED ON THIS PLAN IS INTENDED TO BE SOLELY USED AS THE BASE DATA FOR THE PURPOSES OF 2240 APPLICATION TO COUNCIL

WFH PROPERTIES LTD AND WOOD AND PARTNERS CONSULTANTS ACCEPT NO RESPONSIBILITY FOR ANY BUILDING DESIGN OR CONSTRUCTION WORK BASED ON THIS DRAWING FILE

> WOODS Engineers. Surveyors. Planners. Urban Designers. Architects.

DISCLAIMER:

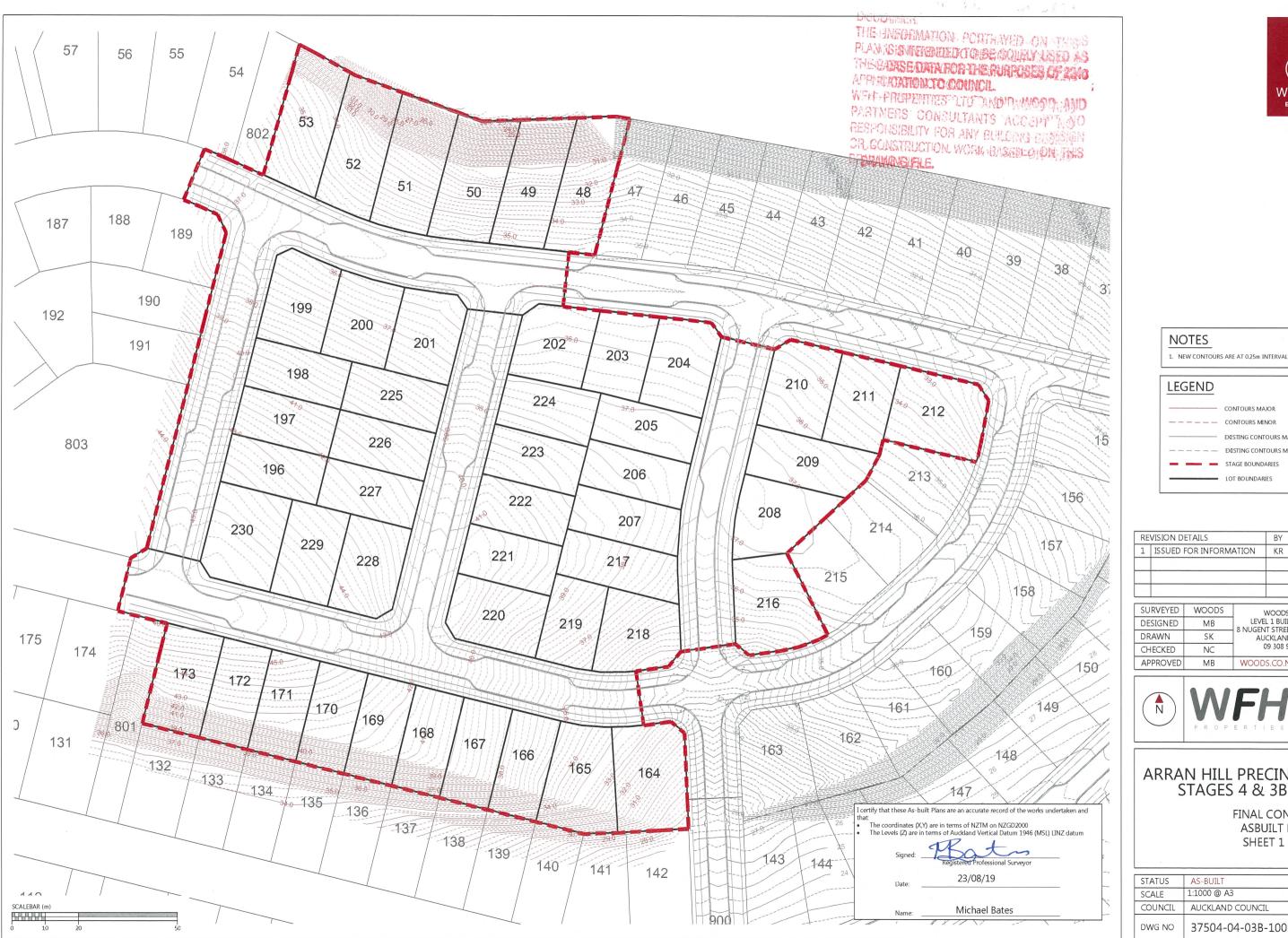

THE INFORMATION PORTHAYED ON THIS PLAN IS INTENDED TO BE SOLELY USED AS THE BASE DATA FOR THE PURPOSES OF 2240 APPLICATION TO COUNCIL

WEH PROPERTIES LTD AND WOOD AND PARTNERS CONSULTANTS ACCEPT NO RESPONSIBILITY FOR ANY BUILDING DESIGN OR CONSTRUCTION WORK BASED ON THIS DRAWING FILE

MILLWATER - ARRAN HILL STAGE 4 & 3B

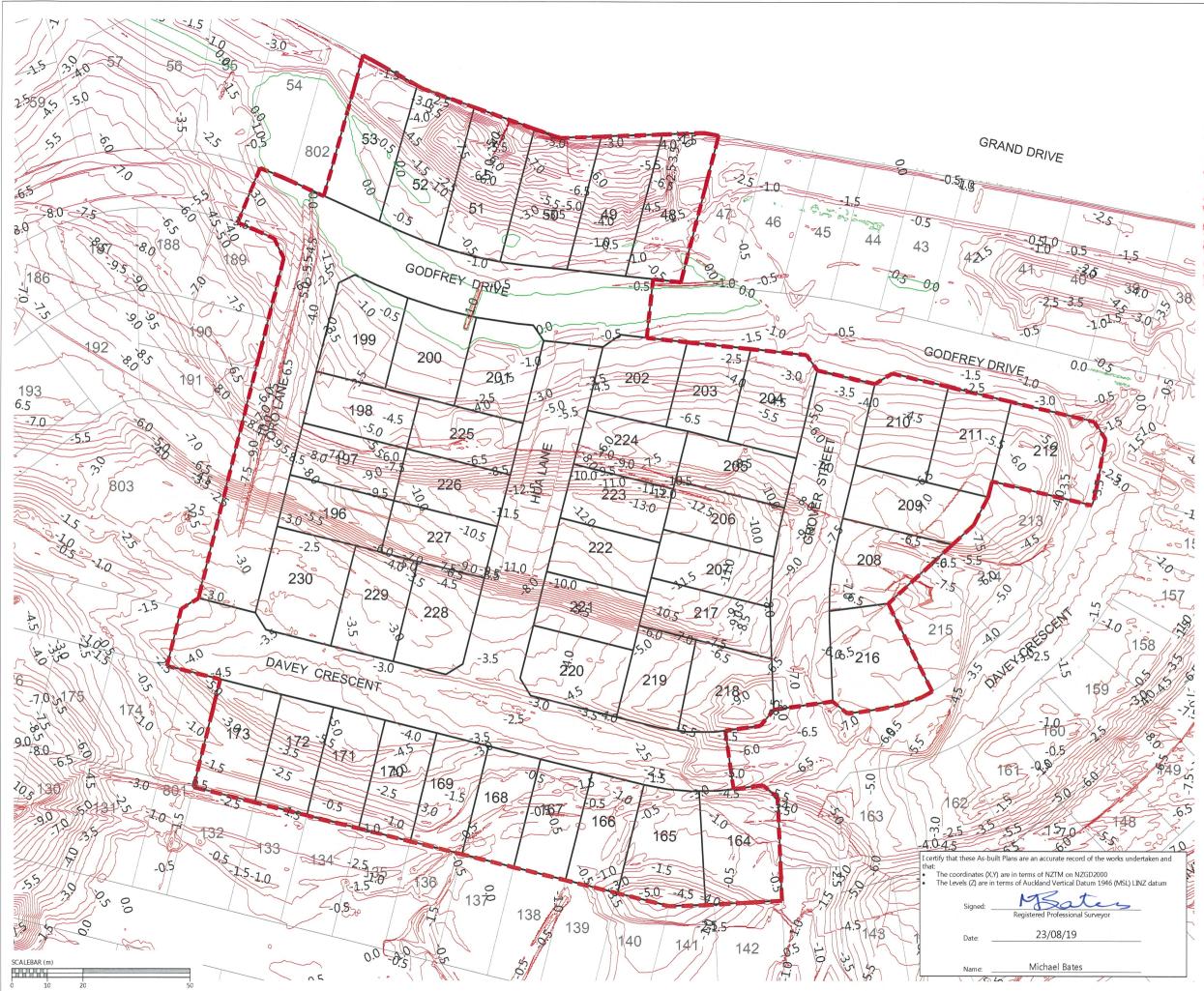
CONTENT INDEX AND LOCALITY PLAN

SHEET	NO.	SHEET TITLE
37504-04-03B-	000	Plans Index and Location Plan
37504-04-03B-	100	Final Contour Asbuilt Plan
37504-04-03B-	110-112	Cut & Fill Asbuilt Original to Final Surface
37504-04-03B-	120	Shear Key, Undercuts & Subsoil Drains Asbuilt Plan
37504-04-03B-	123-124	Deadman
37504-04-03B-	140-141	Slope Stabilisation Plan
37504-04-03B-	200-203	Roading Asbuilt Plans
37504-04-03B-	300-303	Stormwater Asbuilt Plans
37504-04-03B-	400-403	Sanitary Sewer Asbuilt Plans
37504-04-03B-	600-603	Watermain Asbuilt Plans



LOCATION PLAN NOT TO SCALE

1. NEW CONTOURS ARE AT 0.25m INTERVALS

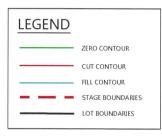

	CONTOURS MAJOR
	CONTOURS MINOR
	EXISTING CONTOURS MAJOR
	EXISTING CONTOURS MINOR
	STAGE BOUNDARIES
-	LOT BOUNDARIES

REVISION DETAILS			BY	DATE	
1	ISSUED FOR INFORMATION			KR	23/08/19
CLI	RVEYED	WOODS	1		
			WOODS Ltd		
DESIGNED		MB	LEVEL 1 BUILDING B, 8 NUGENT STREET, GRAFTOI AUCKLAND 1023 09 308 9229		
DRAWN		SK			0 1023
CHECKED		NC			229
AP	PROVED	MB	WOOD	S.CO.N	IZ
(N	W	F	H	2

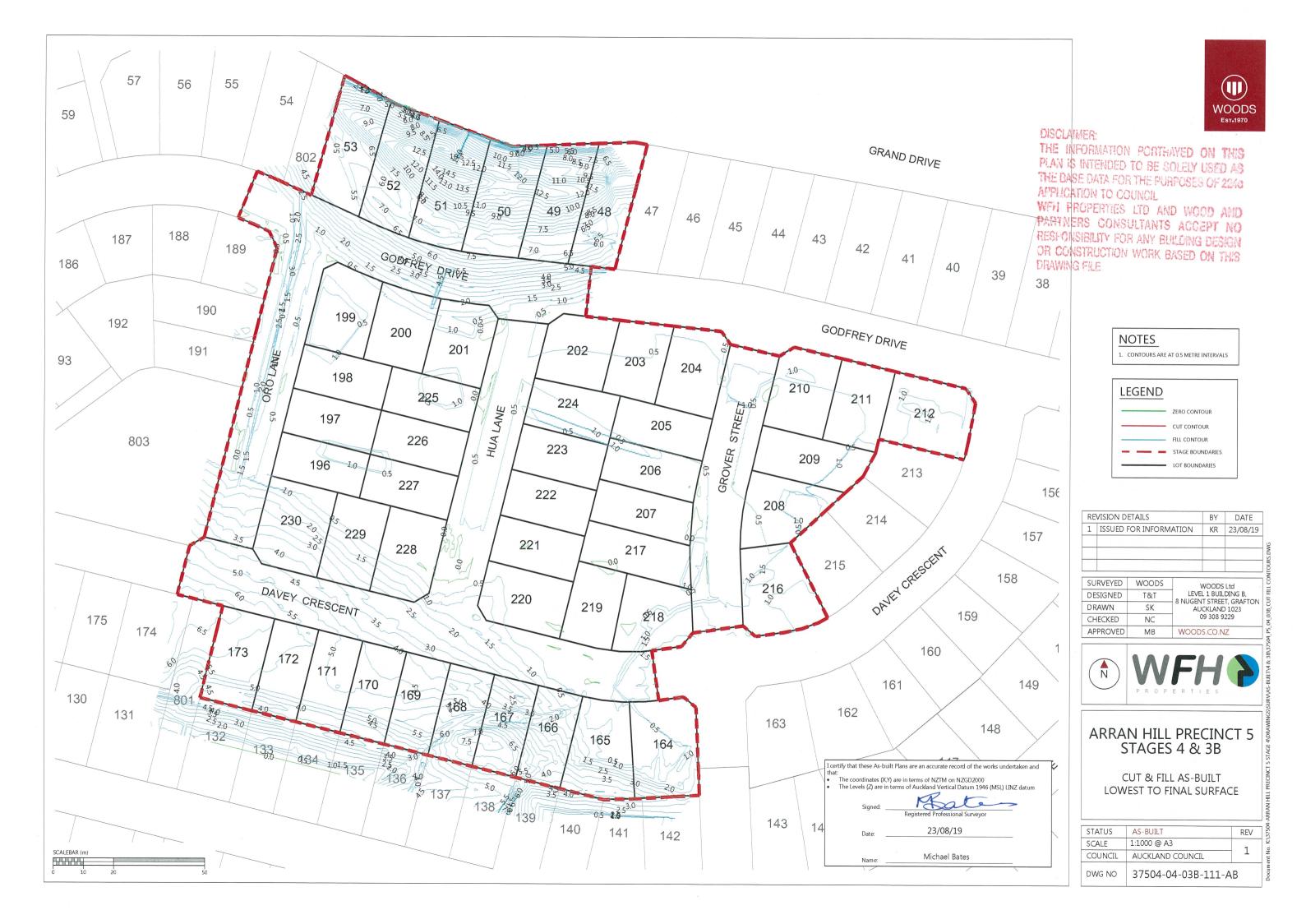
ARRAN HILL PRECINCT 5 STAGES 4 & 3B

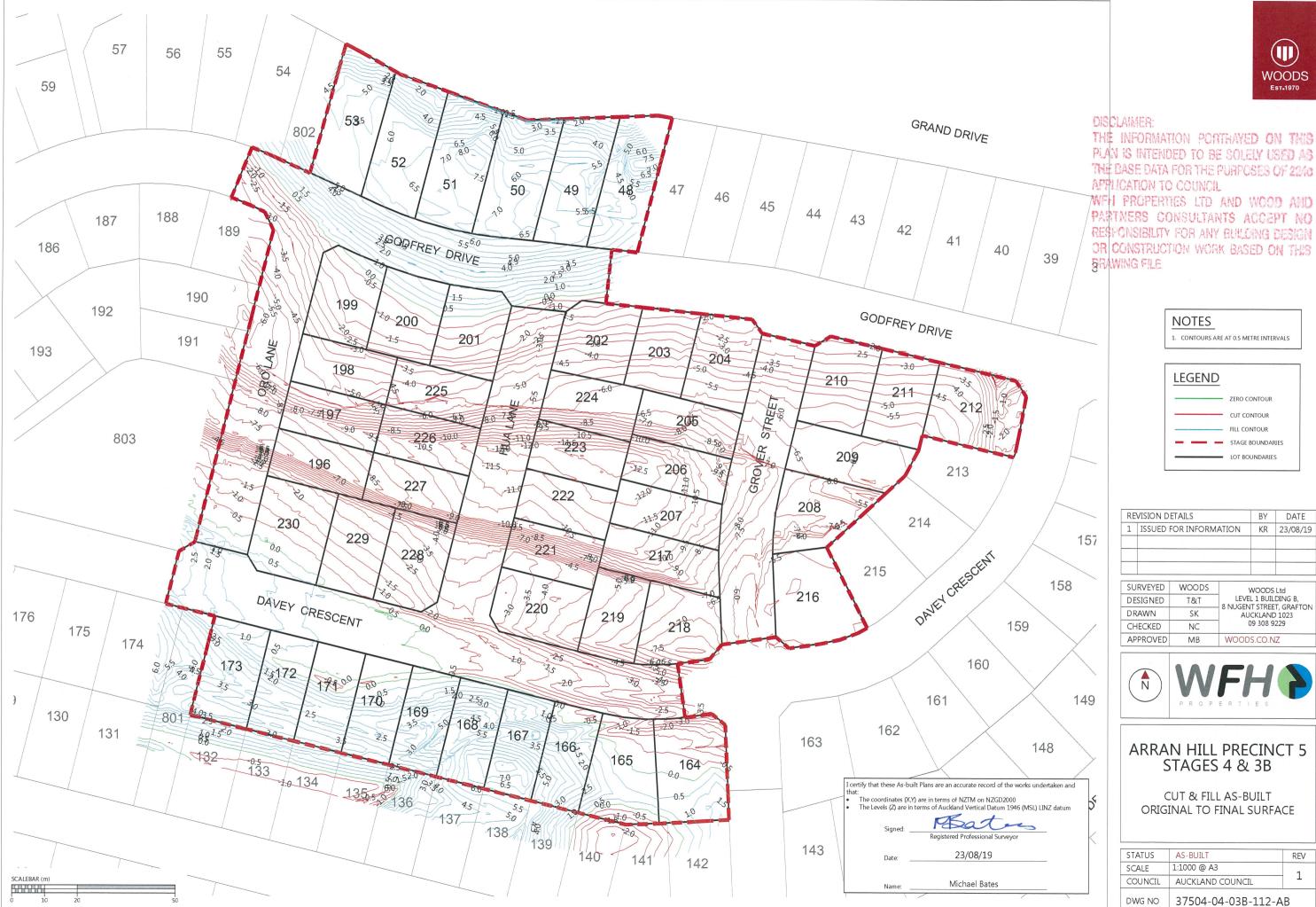
FINAL CONTOUR ASBUILT PLAN SHEET 1 OF 1

STATUS	AS-BUILT	REV
SCALE	1:1000 @ A3	1
COUNCIL	AUCKLAND COUNCIL	T
DWG NO 37504-04-03B-100-AB		В


DISCLAIMER:

THE INFORMATION PORTHAVED ON THIS PLAN IS INTENDED TO BE SOLELY USED AS NE BASE DATA FOR THE PURPOSES OF 2240 PPLICATION TO COUNCIL


NFH PROPERTIES LTD AND WOOD AND PARTNERS CONSULTANTS ACCEPT NO RESPONSIBILITY FOR ANY BUILDING DESIGN OR CONSTRUCTION WORK BASED ON THIS DRAWING FILE.


NOTES

1. CONTOURS ARE AT 0.5 METRE INTERVALS

RE	VISION D	ETAILS		BY	DA	JE	
1	ISSUED	FOR INFORM.	ATION	KR	23/0	8/19	
: 							
SU	RVEYED	WOODS		WOODS	ltd		
DESIGNED		T&T LEVE		EL 1 BUILDING B,			
DRAWN		SK	SK AUCKLAND 1023 NC 09 308 9229				
CHECKED		NC					
APPROVED		MB	WOODS.CO.NZ				
(Ň	P R O P		ES			
(A		N HILL	PRE	CIN	СТ	5	
(S	N HILL STAGES	PRE 4 &	CIN 3B	СТ	5	
	S	N HILL STAGES	PRE 4 &	CIN 3B			
	S	N HILL STAGES	PRE 4 &	CIN 3B			
	S	N HILL STAGES	PRE 4 &	CIN 3B			
	ORIGIN	N HILL STAGES CUT & FILI NAL TO LC	PRE 4 &	CIN 3B	RFAC	E	
ST		N HILL STAGES CUT & FILI NAL TO LC AS-BUILT	PRE 4 & L AS-B DWEST	CIN 3B	RFAC		
ST.	C ORIGIN ATUS ALE	N HILL STAGES CUT & FILI NAL TO LC AS-BUILT 1:1000 @ A3	PRE 4 & L AS-B DWEST	CIN 3B UILT SUR	RFAC	E	
ST.		N HILL STAGES CUT & FILI NAL TO LC AS-BUILT	PRE 4 & L AS-B DWEST	CIN 3B UILT SUR	RFAC	E	

CONTOURS ARE AT 0.5 METRE INTERVALS SUBSOIL DATA SUPPLIED BY CONTRACTOR LEGEND NOVACOIL SUBSOIL DRAINS UPVC SUBSOIL DRAINS EXISTING STORMWATER DRAINAGE NEW STORMWATER DRAINAGE STAGE BOUNDARIES OT BOUNDARIES CONTOURS SHEAR KEY & UNDERCUT AREAS PALISADE WALL PILE AT BOTTOM OF SHEARKEY \bigcirc

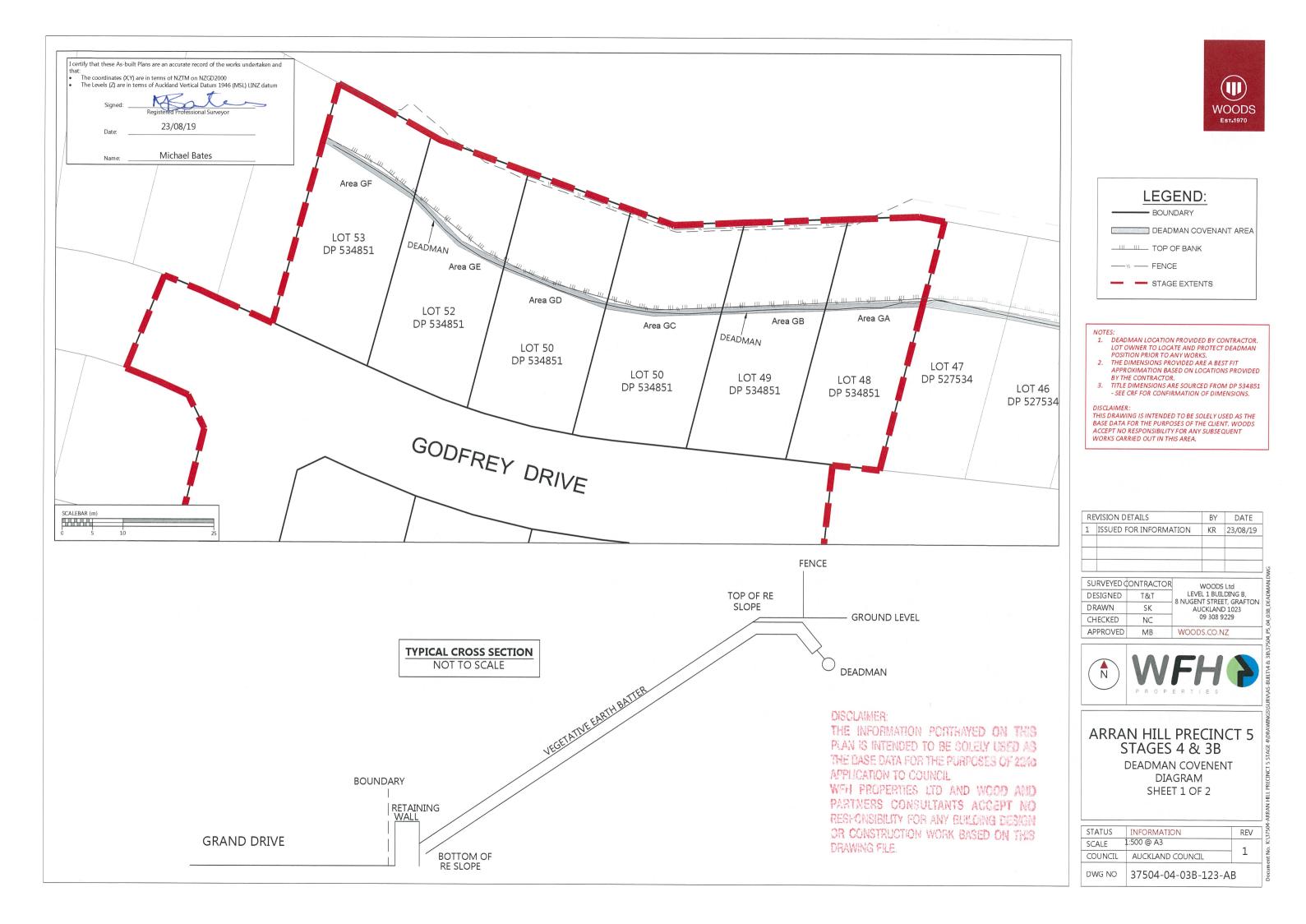
NOTES

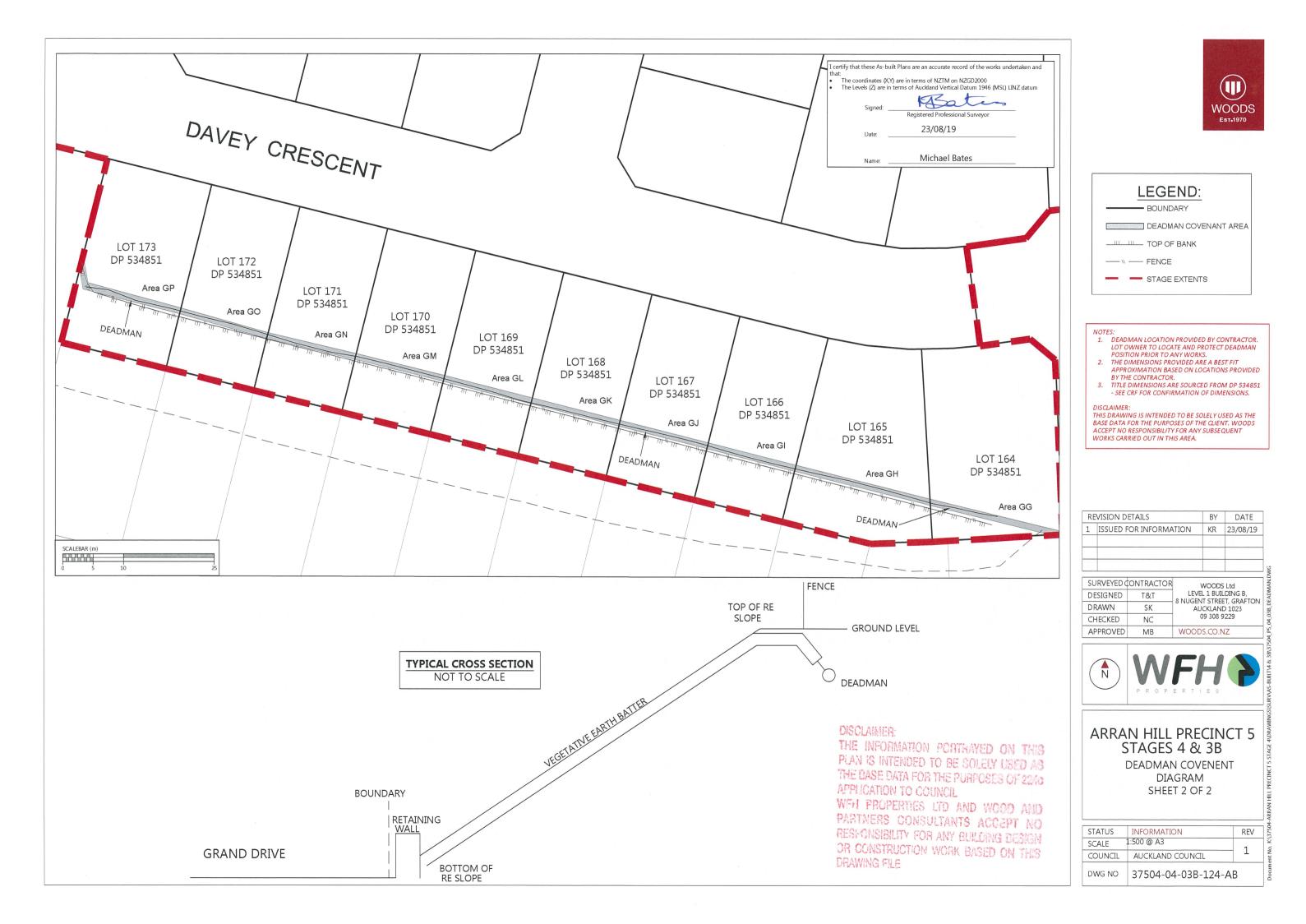
ISCLAIMER:

THE INFORMATION PORTHAYED ON THIS YAN IS INTENDED TO BE SOLELY USED AS NE BASE DATA FOR THE PURPOSES OF 22/10 **PPLICATION TO COUNCIL**

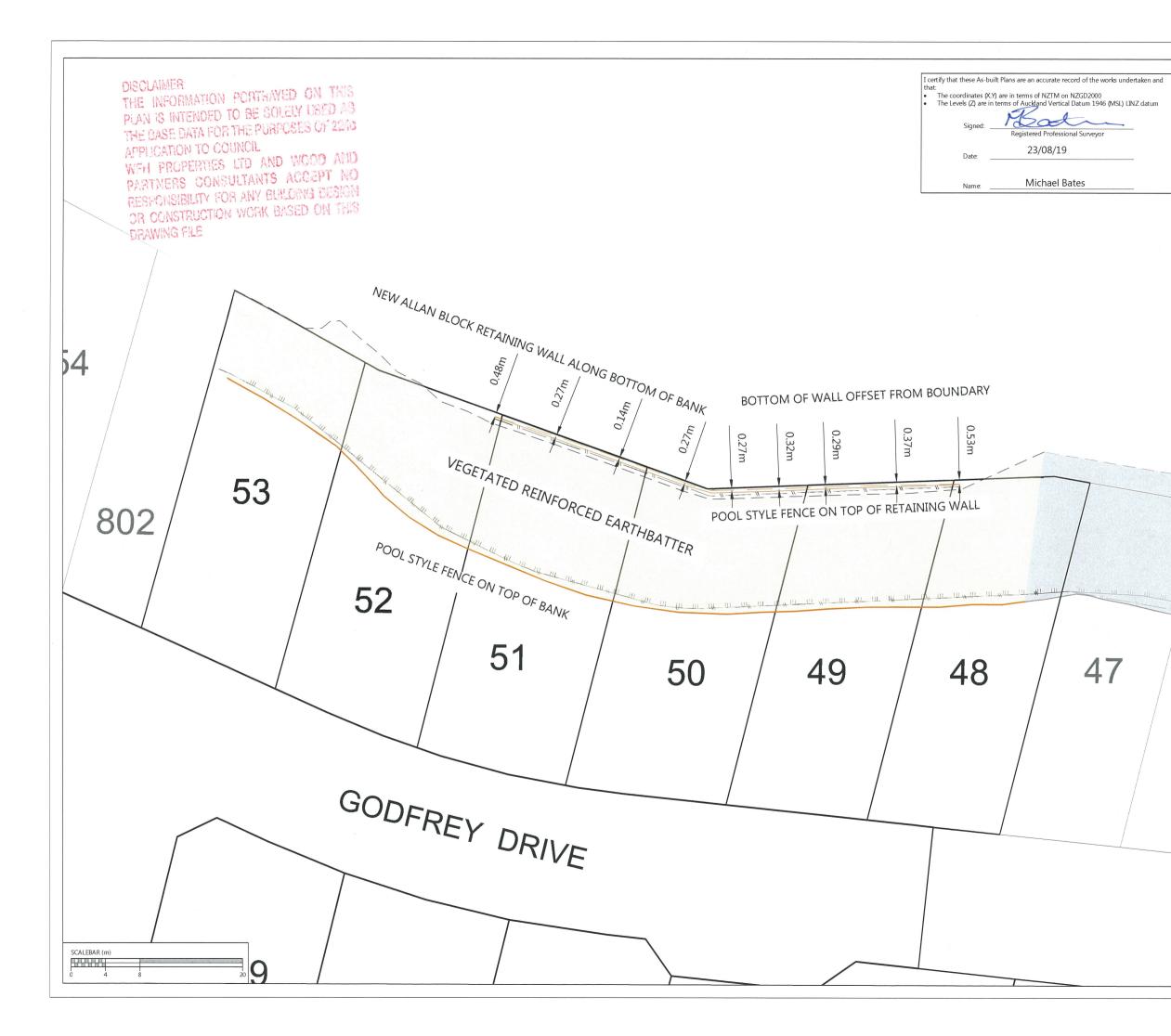
VEH PROPERTIES LTD AND WOOD AND ARTNERS CONSULTANTS ACCEPT NO RESPONSIBILITY FOR ANY BUILDING DESIGN OR CONSTRUCTION WORK BASED ON THIS DRAWING FILE

REVISION DETAILS				BY	DATE
1 ISSUED FOR IN		FOR INFORM	ATION	KR	23/08/19
SUR	VEYED	WOODS		NOODS	Ltd
DES	IGNED	T&T			DING B, T, GRAFTON
DRA	WN	SK	AU	CKLANE	0 1023
CHE	ECKED	NC	(09 308 9	229
APP	ROVED	MB	WOOD	S.CO.N	IZ
		PROP	ERTI	E S	
A		N HILL	PRE		СТ 5
A			PRE		CT 5
	S SH	N HILL TAGES IEAR KEY,	PRE 4 &	3B	Г
	S SH	N HILL TAGES EAR KEY, SUBSOIL	PRE 4 & UNDE DRAIN	3B RCU ASB	Г
	S SH	N HILL TAGES IEAR KEY,	PRE 4 & UNDE DRAIN	3B RCU ASB	Г
	S SH	N HILL TAGES EAR KEY, SUBSOIL	PRE 4 & UNDE DRAIN	3B RCU ASB	Г
	SH AND S	N HILL TAGES EAR KEY, SUBSOIL I SHEET	PRE 4 & UNDE DRAIN 1 OF 1	3B RCU ASB	TUILT

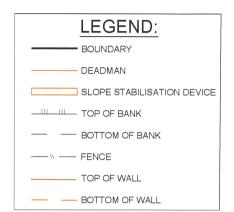

37504-04-03B-120-AB


15

38



DWG NO

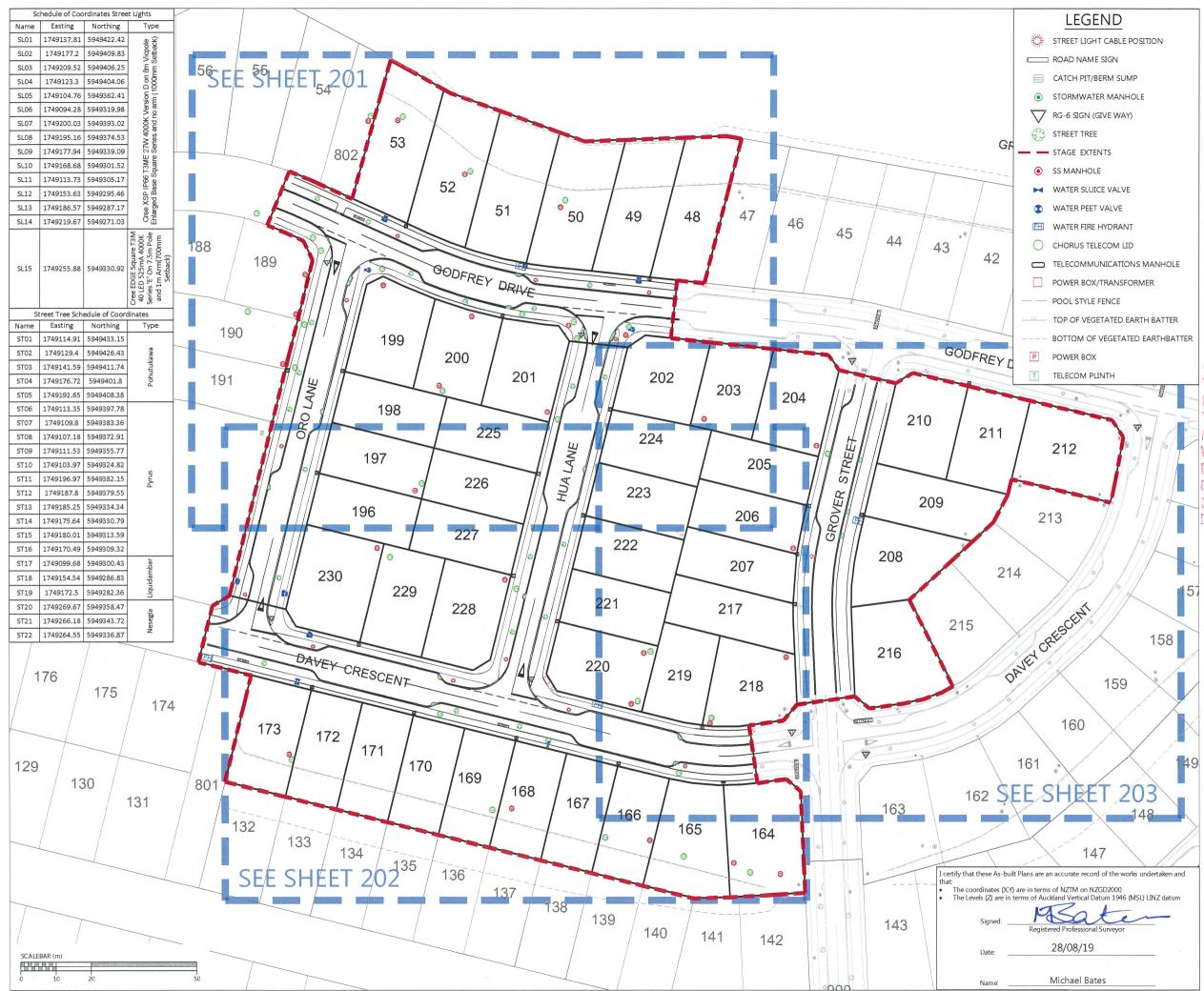


- 1. DEADMAN LOCATION PROVIDED BY CONTRACTOR. LOT OWNER TO LOCATE AND PROTECT DEADMAN POSITION PRIOR TO ANY WORKS.
- 2. THE DIMENSIONS PROVIDED ARE A BEST FIT APPROXIMATION BASED ON LOCATIONS PROVIDED BY THE CONTRACTOR.

DISCLAIMER:

THIS DRAWING IS INTENDED TO BE SOLELY USED AS THE BASE DATA FOR THE PURPOSES OF THE CLIENT. WOODS ACCEPT NO RESPONSIBILITY FOR ANY SUBSEQUENT WORKS CARRIED OUT IN THIS AREA.

RE	REVISION DETAILS			BY	DATE
1	ISSUED F	OR INFORMA	ATION	KR	23/08/19
		8			
SL	JRVEYED	CONTRACTOR	WOODS Ltd		
DE	SIGNED	T&T	LEVEL 1 BUILDING B,		DING B,
DF	DRAWN SK		8 NUGENT STREET, GRAFTO AUCKLAND 1023		
CHECKED NC			9 308 9	229	
AF	PROVED	WOOD	S.CO.N	IZ	
			5		



ARRAN HILL PRECINCT 5 STAGES 4 & 3B

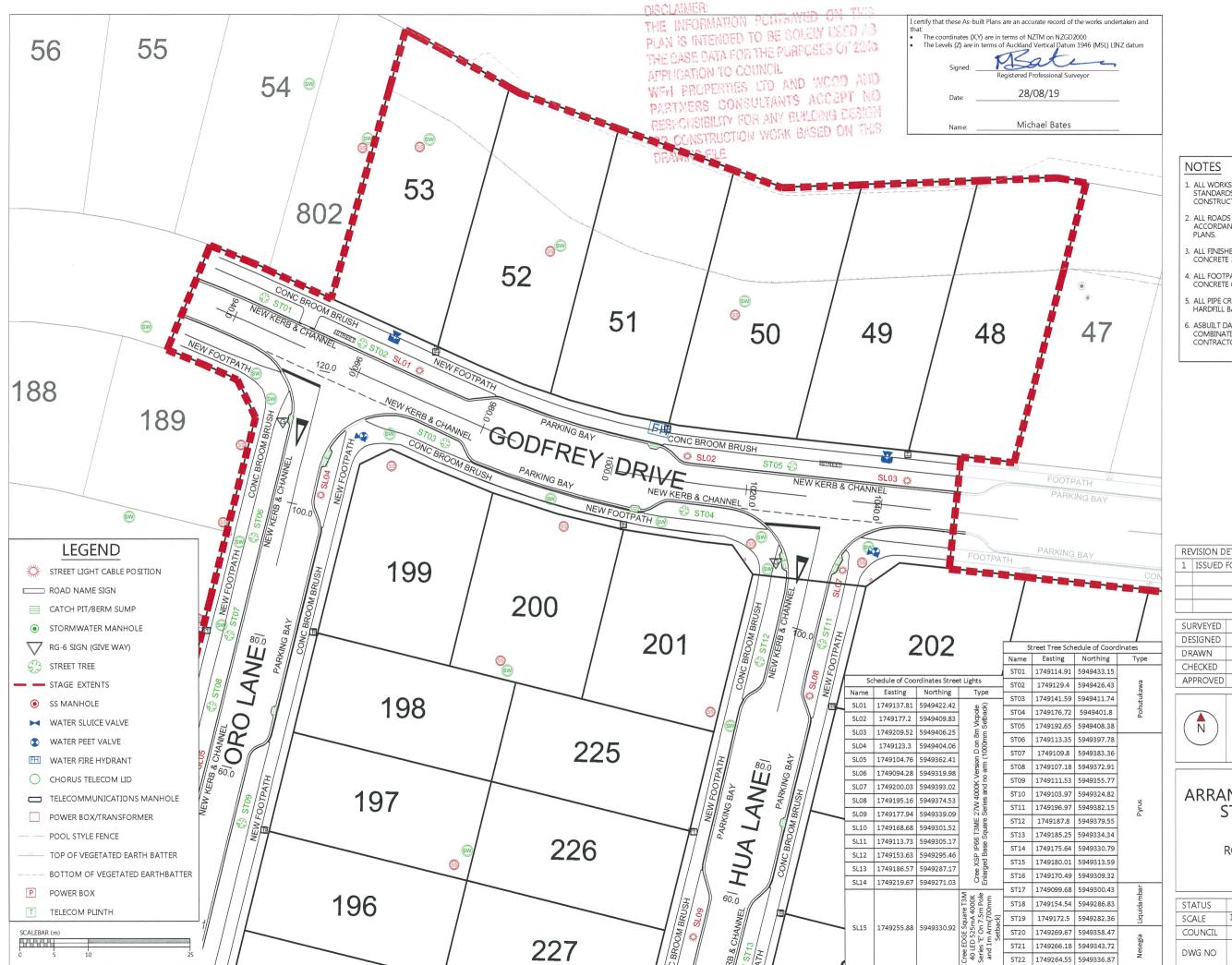
REINFORCED EARTH BATTER & SLOPE STABILISATION PLAN SHEET 2 OF 2

STATUS	INFORMATION	REV
SCALE	1:1000 @ A3	1
COUNCIL	AUCKLAND COUNCIL	T
DWG NO	37504-04-03B-141-A	В

504-ARRAN HILL PRECINCT 5 STAGE 4\DRAWINGS\SURV\AS-BUILT\4 & 3B\37504_P5_04_03B_RE SLOPE.D\

- ALL WORKS AND MATERIALS COMPLY WITH AC STANDARDS FOR ENGINEERING DESIGN AND CONSTRUCTION ISSUE NOV 2005.
- ALL ROADS HAVE BEEN CONSTRUCTED IN ACCORDANCE WITH APPROVED ENGINEERING PLANS
- 3. ALL FINISHED ROAD SURFACES ARE ASHPHALT CONCRETE 30mm THICK.
- 4. ALL FOOTPATHS ARE 100mm THICK BRUSHED CONCRETE OR EXPOSED AGGREGATE AS NOTED.
- 5. ALL PIPE CROSSINGS UNDER ROADS HAVE BEEN HARDFILL BACKFILLED.
- ASBUILT DATA HAS BEEN SOURCED FROM A COMBINATION OF WOODS SURVEY DATA AND CONTRACTOR RECEIVED DATA.

THE INFORMATION PORTHAVED ON THIS LAN IS INTENDED TO BE SOLELY USED AS THE BASE DATA FOR THE PURPOSES OF 2240 PPLICATION TO COUNCIL


WFH PROPERTIES LTD AND WOOD AND PARTNERS CONSULTANTS ACCEPT NO RESPONSIBILITY FOR ANY BUILDING DESIGN OR CONSTRUCTION WORK BASED ON THIS DRAWING FILE

RE	VISION D	ETAILS		BY	DATE
1	ISSUED F	OR INFORM	ATION	KR	28/08/19
SURVEYED WOODS		WOODS Ltd		Ltd	
DE	SIGNED	MB			DING B, T, GRAFTON
DF	RAWN	SK	AL	JCKLAN	0 1023
CH	HECKED	NC	09 308 9229		9229
AD	PROVED	MB	WOOD	S.CO.N	JZ

ARRAN HILL PRECINCT 5 STAGES 4 & 3B ROADING AS-BUILT **OVERALL LAYOUT** SHEET 1 OF 4

STATUS	AS-BUILT	REV
SCALE	1:1000 @ A3	1
COUNCIL	AUCKLAND COUNCIL	T
DWG NO	37504-04-03B-200-A	В

- 1. ALL WORKS AND MATERIALS COMPLY WITH AC STANDARDS FOR ENGINEERING DESIGN AND CONSTRUCTION ISSUE NOV 2005.
- 2. ALL ROADS HAVE BEEN CONSTRUCTED IN ACCORDANCE WITH APPROVED ENGINEERING PLANS.
- 3. ALL FINISHED ROAD SURFACES ARE ASHPHALT CONCRETE 30mm THICK.
- 4. ALL FOOTPATHS ARE 100mm THICK BRUSHED CONCRETE OR EXPOSED AGGREGATE AS NOTED.
- 5. ALL PIPE CROSSINGS UNDER ROADS HAVE BEEN HARDFILL BACKFILLED.
- 6. ASBUILT DATA HAS BEEN SOURCED FROM A COMBINATION OF WOODS SURVEY DATA AND CONTRACTOR RECEIVED DATA.

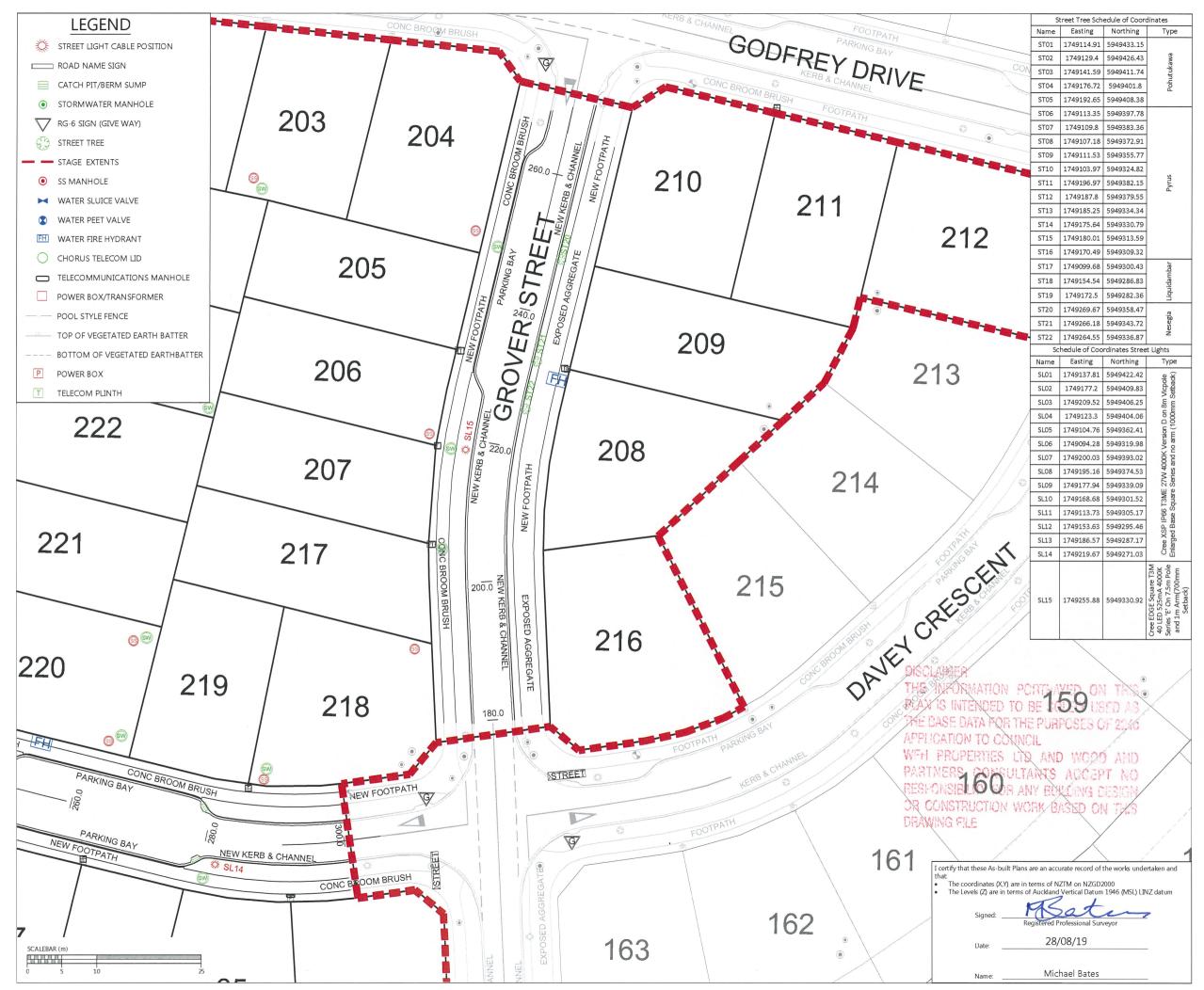
REVISION	DETAILS		BY	DATE	
1 ISSUED	ISSUED FOR INFORMATION			28/08/19	
SURVEYED	WOODS				
DESIGNED	MB		VOODS		
DRAWN	SK	8 NUGEN	T STREE	T, GRAFTON	
CHECKED	NC NC		CKLANE 19 308 9		
		111000		7	
APPROVED	MB	WOOD	S.CO.N	Z	
PROPERTIES					
	ARRAN HILL PRECINCT 5 STAGES 4 & 3B ROADING AS-BUILT				
	STAGES ROADING	4 & AS-BL	3B JILT	CT 5	
	STAGES	4 & AS-BL	3B JILT	CT 5	
	STAGES ROADING SHEET	4 & AS-BL	3B JILT	CT 5	
	STAGES ROADING SHEET	4 & AS-BL	3B JILT	REV	
STATUS	STAGES ROADING SHEET	AS-BL 2 OF 4	3B		

Sch	edule of Coord Northing	dinates Type
91	5949433.15	Type
.4	5949426.43	eg
		- Ikaw
59	5949411.74	prtf
72	5949401.8	Р
65	5949408.38	
35	5949397.78	
.8	5949383.36	
18	5949372.91	
53	5949355.77	
97	5949324.82	
97	5949382.15	yrus
.8	5949379.55	<u> </u>
25	5949334.34	
64	5949330.79	
01	5949313.59	
49	5949309.32	
68	5949300.43	nbar
54	5949286.83	idan
.5	5949282.36	Liqu
67	5949358.47	-
18	5949343.72	esegia
55	5949336.87	N Se
-		t Lights
	rdinates Stree Northing	Туре
81	5949422.42	0
.2	5949409.83	n D on 8m Vicpole (1000mm Setback
.2 52	5949406.25	n Vir
		omn:
.3	5949404.06	100C
76	5949362.41	/ersion arm (
28	5949319.98	(Vel no a
03	5949393.02	4000K Version D on ss and no arm (1000m
16	5949374.53	Cree XSP IP66 T3ME 27W 4000 Enlarged Base Square Series and
94	5949339.09	Cree XSP IP66 T3ME 27W
58	5949301.52	3ME uare
73	5949305.17	e Squ
63	5949295.46	P IPt
	5949295.46 5949287.17	1 XSI
57		Cree
67	5949271.03	<u>с</u> ш
88	5949330.92	Cree EDGE Square T3A 40 LED 525mA 4000K Series 'E' On 7.5m Pole and 1m Arm(700mm Setback)
	_	
-		
		H
Ď€		
ON	A BRUSH	STE
H		
		~
		T.
		1
~		
n	4	- 1
	Т	
of	the works unde	ertaken and
	2000	
tum	1946 (MSL) LI	NZ datum
1	in	_
Sur	veyor	
		_
es		
		_

- 1. ALL WORKS AND MATERIALS COMPLY WITH AC STANDARDS FOR ENGINEERING DESIGN AND CONSTRUCTION ISSUE NOV 2005.
- 2. ALL ROADS HAVE BEEN CONSTRUCTED IN ACCORDANCE WITH APPROVED ENGINEERING PLANS.
- ALL FINISHED ROAD SURFACES ARE ASHPHALT CONCRETE 30mm THICK.
- 4. ALL FOOTPATHS ARE 100mm THICK BRUSHED CONCRETE OR EXPOSED AGGREGATE AS NOTED.
- 5. ALL PIPE CROSSINGS UNDER ROADS HAVE BEEN HARDFILL BACKFILLED.
- 6. ASBUILT DATA HAS BEEN SOURCED FROM A COMBINATION OF WOODS SURVEY DATA AND CONTRACTOR RECEIVED DATA.

DISCLAIMER: THE INFORMATION PORTHAYED ON THIS PLAN IS INTENDED TO BE SOLELY USED AS THE BASE DATA FOR THE PURPOSES OF 2240 APPLICATION TO COUNCIL

WFH PROPERTIES LTD AND WOOD AND PARTNERS CONSULTANTS ACCEPT NO RESPONSIBILITY FOR ANY BUILDING DESIGN OR CONSTRUCTION WORK BASED ON THIS DRAWING FILE


REVISION DETAILS			BY	DATE	
1 1	ISSUED FOR INFORMATION			KR	28/08/19
SURVEYED WOODS		WOODS	WOODS Ltd		Ltd
DES	IGNED	MB	LEVEL 1 BUILDING B, 8 NUGENT STREET, GRAFTOI		
DRA	WN	SK	AU	AUCKLAND 1023	0 1023
CHECKED NC		(09 308 9	229	
APPROVED MB		WOOD	S.CO.N	Z	

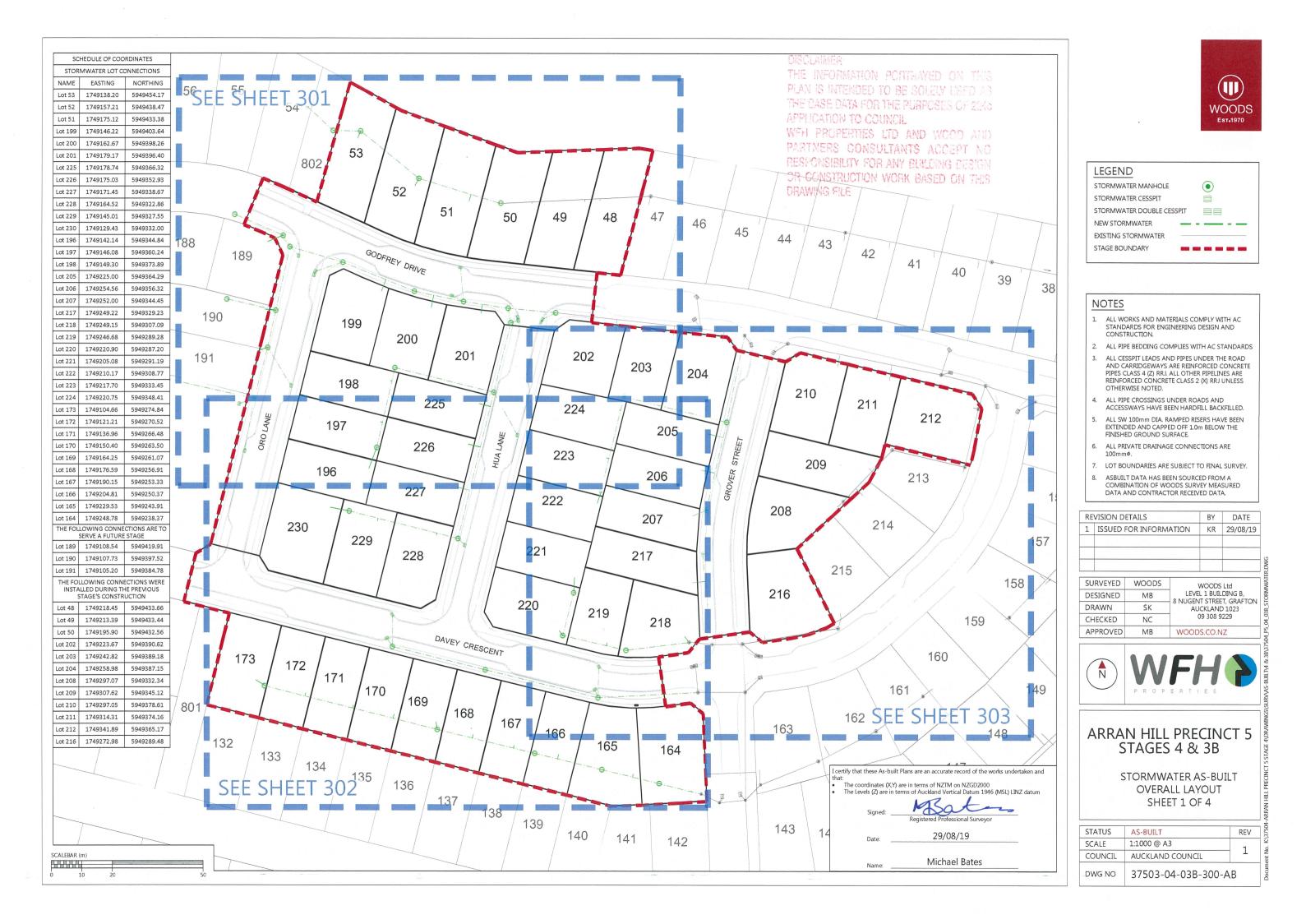
ARRAN HILL PRECINCT 5 STAGES 4 & 3B

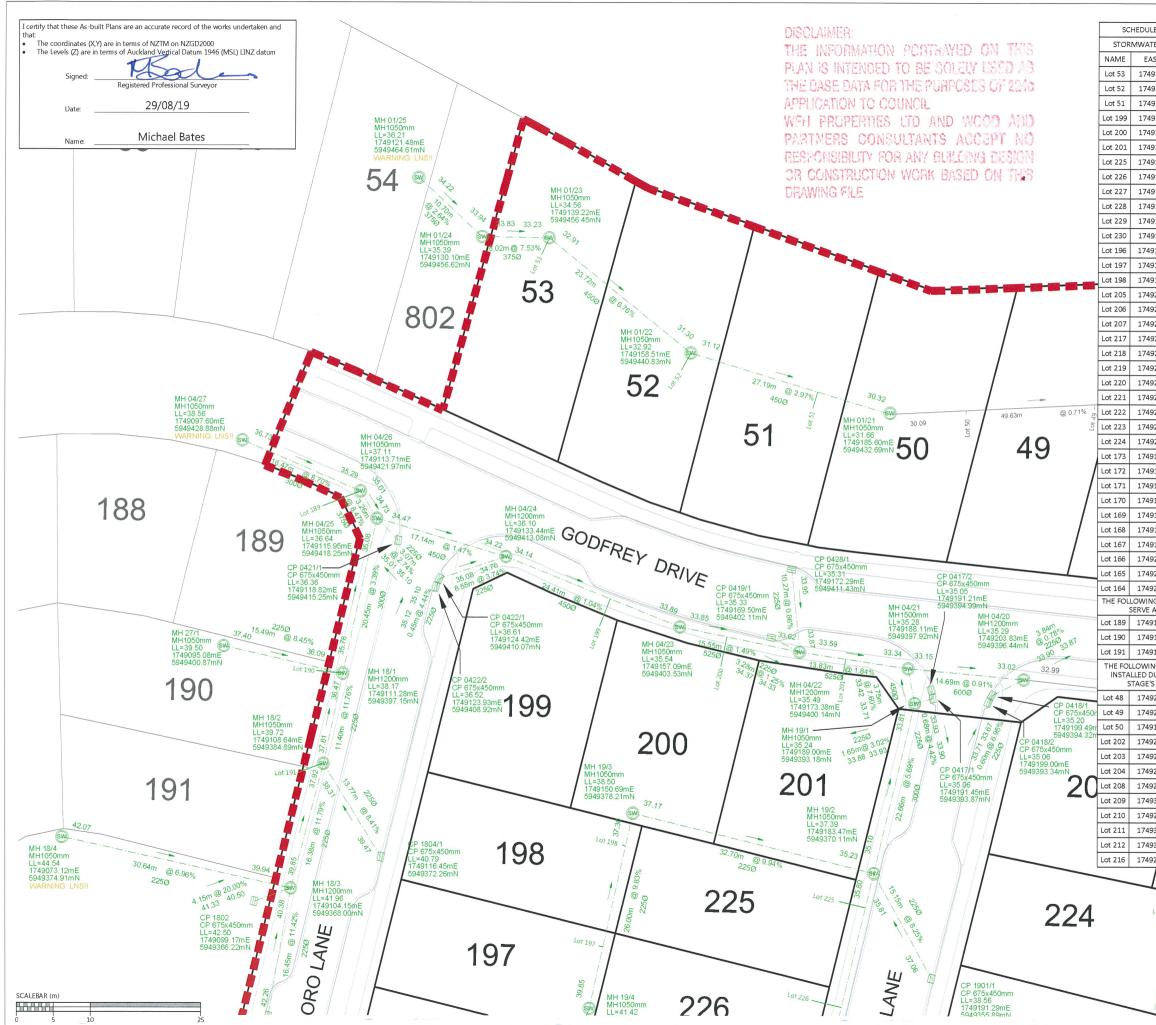
ROADING AS-BUILT SHEET 3 OF 4

STATUS	AS-BUILT	REV
SCALE	1:500 @ A3	1
COUNCIL	AUCKLAND COUNCIL	T
DWG NO	37504-04-03B-202-A	В

- 1. ALL WORKS AND MATERIALS COMPLY WITH AC STANDARDS FOR ENGINEERING DESIGN AND CONSTRUCTION ISSUE NOV 2005.
- 2. ALL ROADS HAVE BEEN CONSTRUCTED IN ACCORDANCE WITH APPROVED ENGINEERING PLANS.
- 3. ALL FINISHED ROAD SURFACES ARE ASHPHALT CONCRETE 30mm THICK.
- 4. ALL FOOTPATHS ARE 100mm THICK BRUSHED CONCRETE OR EXPOSED AGGREGATE AS NOTED.
- 5. ALL PIPE CROSSINGS UNDER ROADS HAVE BEEN HARDFILL BACKFILLED.
- 6. ASBUILT DATA HAS BEEN SOURCED FROM A COMBINATION OF WOODS SURVEY DATA AND CONTRACTOR RECEIVED DATA.

REVISION DETAILS			BY	DATE	
1	ISSUED I	FOR INFORM	ATION	KR	28/08/19
SU	RVEYED	WOODS	1	NOODS	Ltd
DE	SIGNED	MB		LEVEL 1 BUILDING B,	
DR	AWN	SK	8 NUGENT STREET, GRAFTON AUCKLAND 1023		
CH	IECKED	NC		09 308 9	229
AP	PROVED	MB	WOOD	S.CO.N	IZ




ARRAN HILL PRECINCT 5 STAGES 4 & 3B

ROADING AS-BUILT SHEET 4 OF 4

STATUS	AS-BUILT	REV
SCALE	1:500 @ A3	1
COUNCIL	AUCKLAND COUNCIL	T
DWG NO	37504-04-03B-203-A	В

ia. K\37504-ARRAN HILL PRECINCT 5 STAGE 4\DRAWINGS\SURV\AS-BUILT\4 & 3B\37504 P5 04 03B ROADING PLA

E OF COC	RDINATES
ER LOT C	ONNECTIONS
STING	NORTHING
138.20	5949454.17
157.21	5949438.47
175.12	5949433.38
146.22	5949403.64
162.67	5949398.26
179.17	5949396.40
178.74	5949366.32
175.03	5949352.93
171.45	5949338.67
164.52	5949322.86
145.01	5949327.55
129.43	5949332.00
142.14	5949344.84
146.08	5949360.24
149.30	
	5949373.89
225.00	5949364.29
254.56	5949356.32
252.00	5949344.45
249.22	5949329.23
249.15	5949307.09
246.68	5949289.28
220.90	5949287.20
205.08	5949291.19
210.17	5949308.77
217.70	5949333.45
220.75	5949348.41
104.66	5949274.84
121.21	5949270.52
136.96	5949266.48
150.40	5949263.50
164.25	5949261.07
176.59	5949256.91
190.15	5949253.33
204.81	5949250.37
229.53	5949243.91
248.78	5949238.37
G CONNE	
108.54	5949419.91
107.73	5949397.52
105.20	5949384.78
G CONNI	ECTIONS WERE HE PREVIOUS
CONSTR	
218.45	5949433.66
213.39	5949433.44
195.90	5949433.44
223.67	5949390.62
242.82	5949389.18
258.98	5949387.15
297.07	5949332.34
307.62	5949345.12
297.05	5949378.61
314.31	5949374.16
341.89	5949365.17
272.98	5949289.48
	35.41
	SW
14:5£	
01310	

WOODS

Est.1970

NOTES

- 1. ALL WORKS AND MATERIALS COMPLY WITH AC STANDARDS FOR ENGINEERING DESIGN AND CONSTRUCTION.
- 2. ALL PIPE BEDDING COMPLIES WITH AC STANDARDS
- ALL CESSPIT LEADS AND PIPES UNDER THE ROAD AND CARRIDGEWAYS ARE REINFORCED CONCRETE PIPES CLASS 4 (2) RRI. ALL OTHER PIPELINES ARE REINFORCED CONCRETE CLASS 2 (X) RRJ UNLESS OTHERWISE NOTED.
- 4. ALL PIPE CROSSINGS UNDER ROADS AND ACCESSWAYS HAVE BEEN HARDFILL BACKFILLED
- ALL SW 100mm DIA. RAMPED RISERS HAVE BEEN EXTENDED AND CAPPED OFF 1.0m BELOW THE FINISHED GROUND SURFACE.
- ALL PRIVATE DRAINAGE CONNECTIONS ARE 100mmø.
- 7. LOT BOUNDARIES ARE SUBJECT TO FINAL SURVEY.
- 8. ASBUILT DATA HAS BEEN SOURCED FROM A COMBINATION OF WOODS SURVEY MEASURED DATA AND CONTRACTOR RECEIVED DATA.

REVISION DETAILS			BY	DATE	
1	ISSUED	FOR INFORM	ATION	KR	29/08/19
SU	RVEYED	WOODS	WOODS Ltd		Ltd
DE	SIGNED	MB			DING B,
DRAWN		SK	 8 NUGENT STREET, GRAFTC AUCKLAND 1023 		0 1023
CHECKED		NC	09 308 9229		229
APPROVED		MB	WOODS.CO.NZ		Z

ARRAN HILL PRECINCT 5 STAGES 4 & 3B

STORMWATER AS-BUILT SHEET 2 OF 4

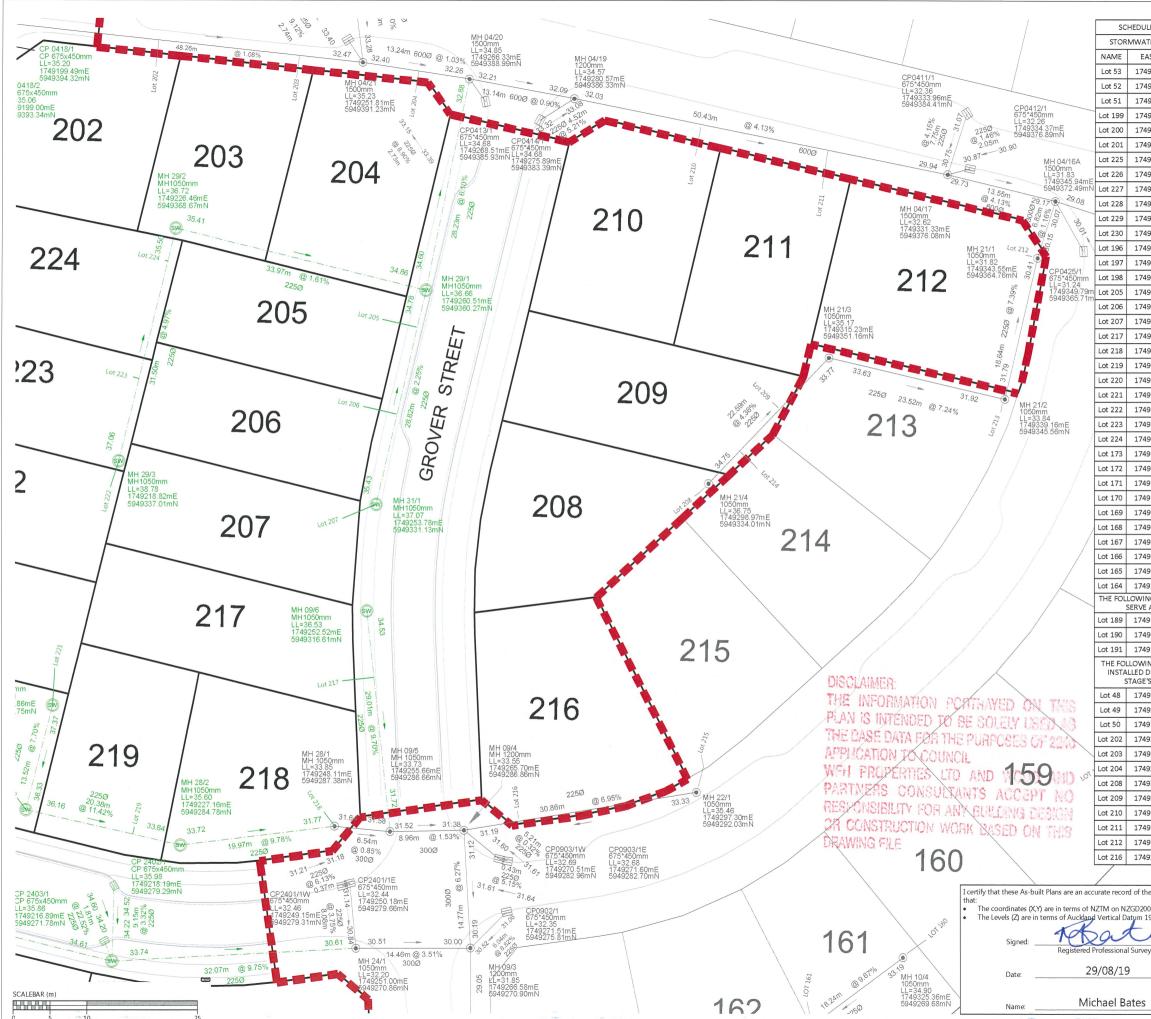
STATUS	AS-BUILT	REV
SCALE	1:500 @ A3	1
COUNCIL	AUCKLAND COUNCIL	1 I
DWG NO	37504-04-03B-301-A	В

E OE COC	RDINATES				
	ONNECTIONS				
STING	NORTHING				
9138.20	5949454.17				
9157.21	5949438.47				
9175.12	5949433.38				
9146.22	5949403.64				
9162.67	5949398.26				
9179.17	5949396.40				
9178.74	5949366.32				
9175.03	5949352.93				
9171.45	5949338.67				
9164.52	5949322.86				
9145.01	5949327.55				
9129.43	5949332.00				
9142.14	5949344.84				
9146.08	5949360.24				
9149.30	5949373.89				
9225.00	5949364.29				
9254.56	5949356.32				
9252.00	5949344.45				
9249.22	5949329.23				
9249.15	5949307.09				
9246.68	5949289.28				
9220.90	5949287.20				
9205.08	5949291.19				
9210.17	5949308.77				
	5949333.45				
9217.70					
9220.75	5949348.41				
9104.66	5949274.84				
9121.21	5949270.52				
9136.96	5949266.48				
9150.40	5949263.50				
9164.25					
	5949261.07				
9176.59	5949256.91				
9190.15	5949253.33				
9204.81	5949250.37				
9229.53	5949243.91				
9248.78	5949238.37				
IG CONNE	CTIONS ARE TO				
A FUTURE STAGE					
9108.54	5949419.91				
9107.73	5949397.52				
9105.20	5949384.78				
NG CONNI	ECTIONS WERE				
OURING TH	E PREVIOUS				
9218.45	5949433.66				
9213.39	5949433.44				
9195.90	5949432.56				
9223.67	5949390.62				
9242.82	5949389.18				
258.98	5949387.15				
297.07	5949332.34				
9307.62					
	5949345.12				
9297.05	5949378.61				
9314.31	5949374.16				
9341.89	5949365.17				
9272.98	5949289.48				
675*4 LL=27 7492	.32 5949237.2				
7492	59.00mE				
09492	36.61mN 250				
	25.84 4.27%				
8 T	000				
	8 6 0 97 0 1 /25 55 - 2!				
25.96 25	/25.55 - 2!				
25. 3.59%	6 7 24m @				
50 0 1	3000/ //H 11/1				
	1050mm _L=27.20				
IE L	L-21.20				
nN 1	749258.10mE				
11N 8	1749258.10mE 5949234.49mN				

STAGE BOUNDARY

- 1. ALL WORKS AND MATERIALS COMPLY WITH AC STANDARDS FOR ENGINEERING DESIGN AND CONSTRUCTION.
- 2. ALL PIPE BEDDING COMPLIES WITH AC STANDARDS
- ALL CESSPIT LEADS AND PIPES UNDER THE ROAD AND CARRIDGEWAYS ARE REINFORCED CONCRETE PIPES CLASS 4 (Z) RRJ. ALL OTHER PIPELINES ARE REINFORCED CONCRETE CLASS 2 (X) RRJ UNLESS OTHERWISE NOTED.
- 4. ALL PIPE CROSSINGS UNDER ROADS AND ACCESSWAYS HAVE BEEN HARDFILL BACKFILLED
- ALL SW 100mm DIA. RAMPED RISERS HAVE BEEN EXTENDED AND CAPPED OFF 1.0m BELOW THE FINISHED GROUND SURFACE.
- 6. ALL PRIVATE DRAINAGE CONNECTIONS ARE 100mm $\phi.$
- 7. LOT BOUNDARIES ARE SUBJECT TO FINAL SURVEY.
- ASBUILT DATA HAS BEEN SOURCED FROM A COMBINATION OF WOODS SURVEY MEASURED DATA AND CONTRACTOR RECEIVED DATA.

REVISION DETAILS			BY	DATE	
1	ISSUED	FOR INFORM	ATION	KR	29/08/19
	1.2	2.1			
SU	RVEYED	WOODS	WOODS Ltd LEVEL 1 BUILDING B, 8 NUGENT STREET, GRAFTO		Ltd
DE	SIGNED	MB			
DRAWN		SK	AUCKLAND 1023		
CHECKED		NC	09 308 9229		229
APPROVED		MB	WOODS.CO.NZ		Z



ARRAN HILL PRECINCT 5 STAGES 4 & 3B

STORMWATER AS-BUILT SHEET 3 OF 4

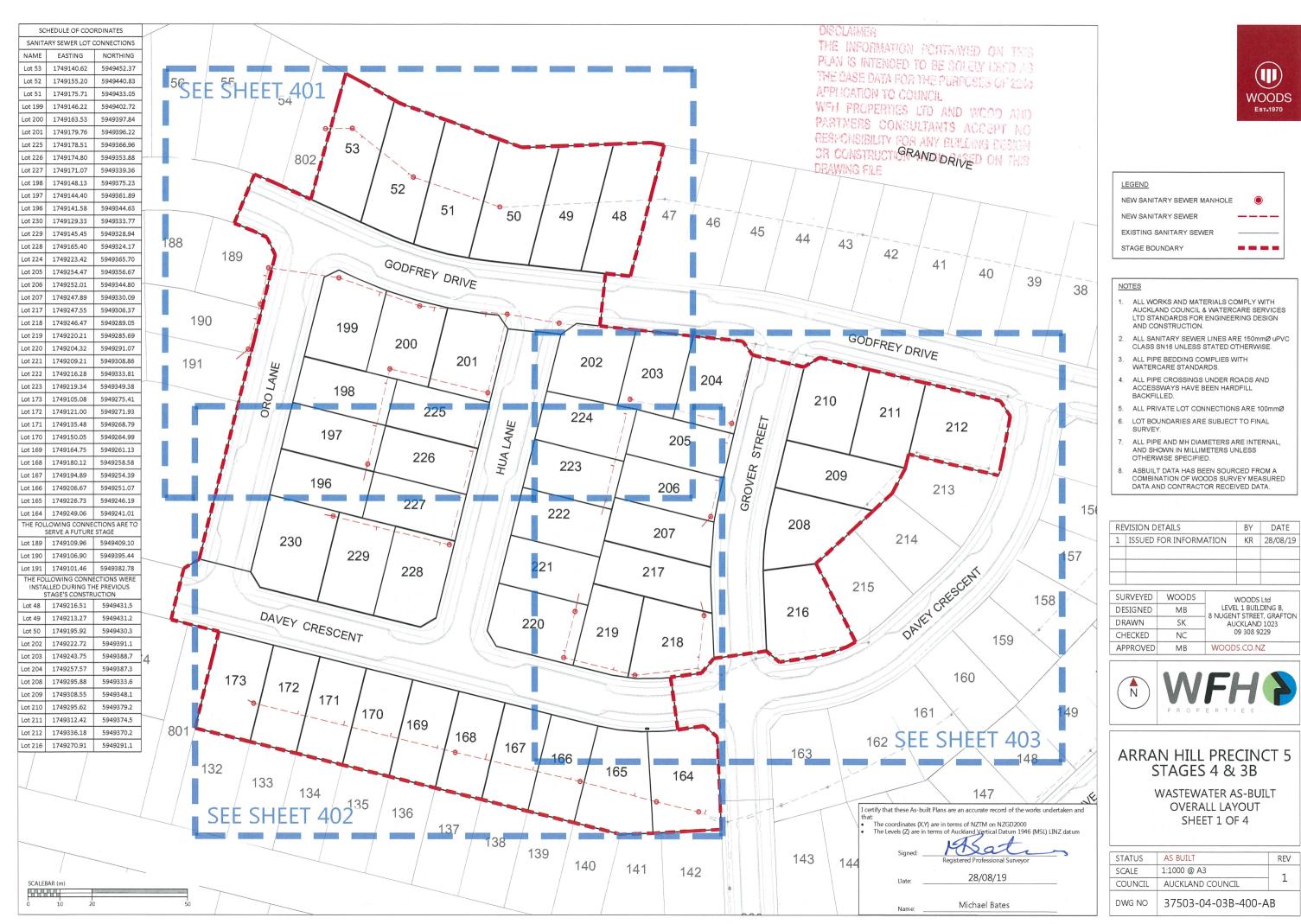
STATUS	AS-BUILT	REV
SCALE	1:500 @ A3	1
COUNCIL	AUCKLAND COUNCIL	T
DWG NO	37504-04-03B=302-A	B

Io. K\37504-ARRAN HILL PRECINCT 5 STAGE 4\DRAWINGS\SURV\AS-BUILT\A & 3B\37504_P2_04_03B_STORMWATER.DWG

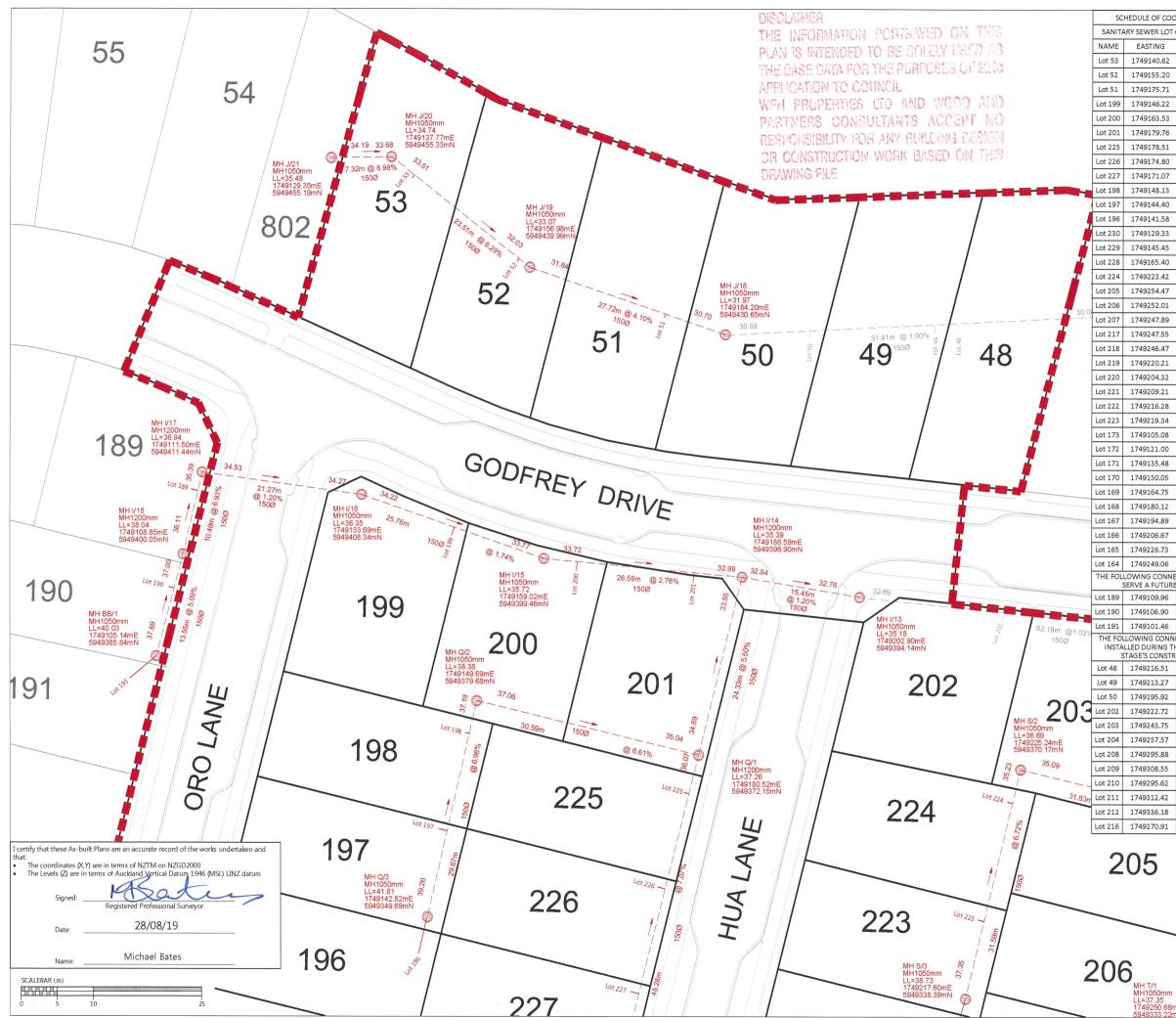
	RDINATES				
TER LOT CO	ONNECTIONS				
STING	NORTHING				
9138.20	5949454.17				
9157.21	5949438.47				
9175.12	5949433.38				
9146.22	5949403.64				
9162.67	5949398.26				
9179.17	5949396.40				
9178.74	5949366.32				
9175.03	5949352.93				
9171.45	5949338.67				
9164.52	5949322.86				
9145.01	5949327.55				
9129.43	5949332.00				
9142.14	5949344.84				
9146.08	5949360.24				
9149.30	5949373.89				
9225.00	5949364.29				
9254.56	5949356.32				
9252.00	5949344.45				
9249.22	5949329.23				
9249.15	5949307.09				
9246.68	5949289.28				
9220.90	5949287.20				
9205.08	5949291.19				
9210.17	5949308.77				
9217.70					
	5949333.45				
9220.75	5949348.41				
9104.66	5949274.84				
9121.21	5949270.52				
9136.96	5949266.48				
9150.40	5949263.50				
9164.25	5949261.07				
9176.59	5949256.91				
9190.15	5949253.33				
9204.81	5949250.37				
9229.53	5949243.91				
9248.78	5949238.37				
IG CONNECTIONS ARE TO A FUTURE STAGE					
9108.54	5949419.91				
9107.73	5949397.52				
9105.20	5949384.78				
	ECTIONS WERE HE PREVIOUS				
S CONSTR					
9218.45	5949433.66				
9213.39	5949433.44				
9195.90	5949432.56				
9223.67	5949390.62				
9242.82	5949389.18				
9258.98	5949387.15				
9297.07	5949332.34				
9307.62	5949345.12				
9297.05	5949378.61				
9314.31	5949374.16				
9341.89	5949365.17				
9272.98	5949289.48				
e worke un	dertaken and				
	actionell allu				
00 946 (MSL) LINZ datum					
<u>L</u>					
yor					

- 1. ALL WORKS AND MATERIALS COMPLY WITH AC STANDARDS FOR ENGINEERING DESIGN AND CONSTRUCTION.
- 2. ALL PIPE BEDDING COMPLIES WITH AC STANDARDS
- ALL CESSPIT LEADS AND PIPES UNDER THE ROAD AND CARRIDGEWAYS ARE REINFORCED CONCRETE PIPES CLASS 4 (Z) RR.J. ALL OTHER PIPELINES ARE REINFORCED CONCRETE CLASS 2 (X) RRJ UNLESS OTHERWISE NOTED.
- 4. ALL PIPE CROSSINGS UNDER ROADS AND ACCESSWAYS HAVE BEEN HARDFILL BACKFILLED.
- ALL SW 100mm DIA. RAMPED RISERS HAVE BEEN EXTENDED AND CAPPED OFF 1.0m BELOW THE FINISHED GROUND SURFACE.
- 6. ALL PRIVATE DRAINAGE CONNECTIONS ARE 100mm ϕ .
- 7. LOT BOUNDARIES ARE SUBJECT TO FINAL SURVEY.
- ASBUILT DATA HAS BEEN SOURCED FROM A COMBINATION OF WOODS SURVEY MEASURED DATA AND CONTRACTOR RECEIVED DATA.

REVISION DETAILS			BY	DATE	
1	ISSUED I	OR INFORM	ATION	KR	29/08/19
		-			
1.1.1					
SU	RVEYED	WOODS	WOODS Ltd LEVEL 1 BUILDING B, 8 NUGENT STREET, GRAFTC		Ltd
DE	SIGNED	MB			
DRAWN		SK	AUCKLAND 1023		
CHECKED		NC	09 308 9229		229
APPROVED		MB	WOODS.CO.NZ		Z

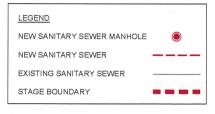


ARRAN HILL PRECINCT 5 STAGES 4 & 3B


STORMWATER AS-BUILT SHEET 4 OF 4

STATUS	AS-BUILT	REV
SCALE	1:500 @ A3	1
COUNCIL	AUCKLAND COUNCIL	Ţ
DWG NO 37504-04-03B-303-AB		В

504-ARRAN HILL PRECINCT 5 STAGE 4\DRAWINGS\SURV\AS-BUILT\4 & 3B\37504_P5_04_03B_STORMWATER.DWG



37504-ARRAN HILL PRECINCT 5 STAGE 4\DRAWINGS\SURV\AS-BUILT\4 & 3B\37504_P5_04_03B_SEWER.DW

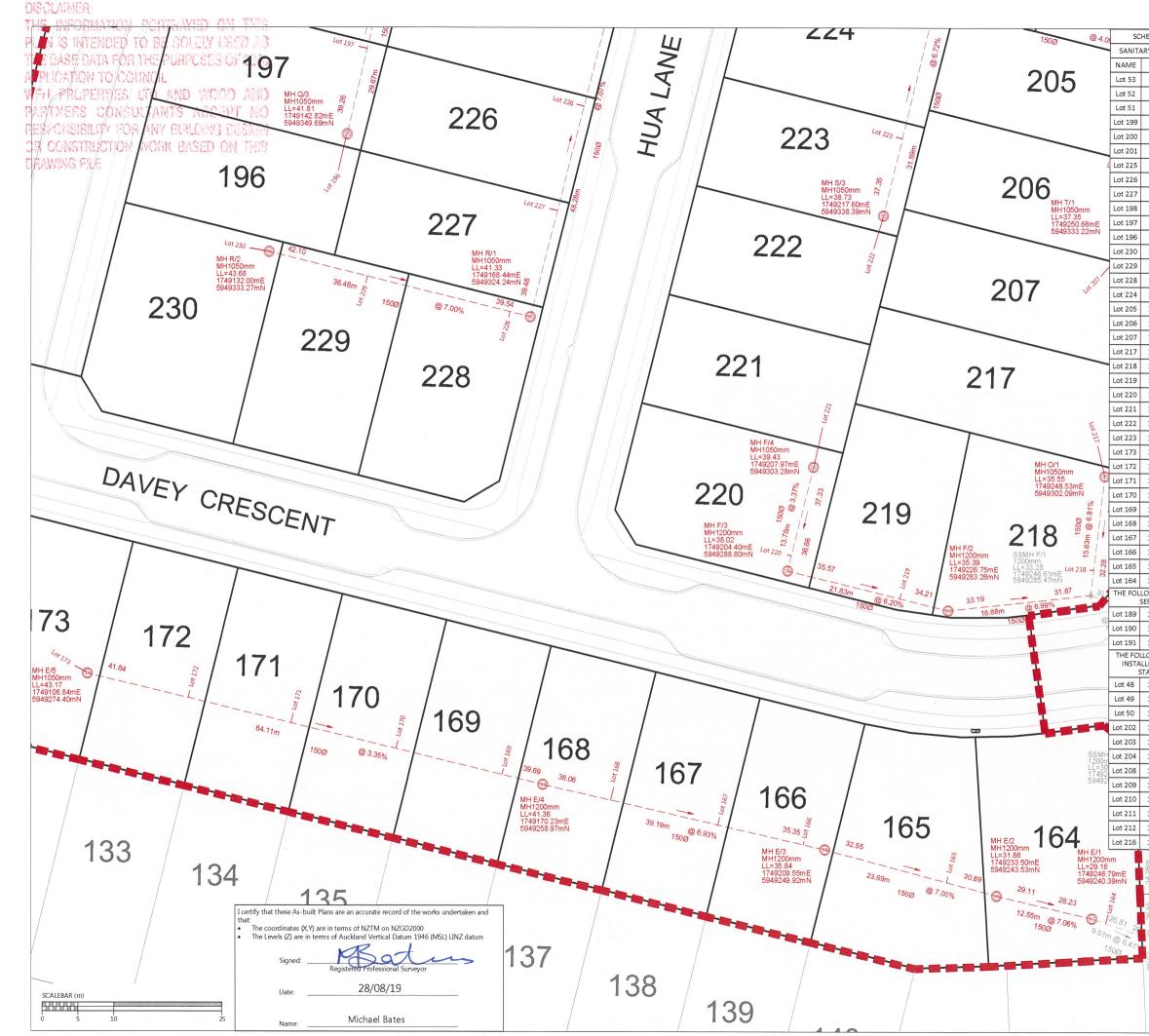
DULE OF COC	RDINATES
SEWER LOT	CONNECTIONS
EASTING	NORTHING
1749140.62	5949452.37
1749155.20	5949440.83
1749175.71	5949433.05
1749146.22	5949402.72
1749163.53	5949397.84
1749179.76	5949396.22
1749178.51	5949366.96
1749174.80	5949353.88
1749171.07	5949339.36
1749148.13	5949375.23
1749144.40	5949361.89
1749141.58	5949344.63
1749129.33	5949333.77
1749145.45	5949328.94
1749165.40	5949324.17
1749223.42	5949365.70
1749254.47	5949356.67
1749252.01	5949344.80
1749247.89	5949330.09
1749247.55	5949306.37
1749246.47	5949289.05
1749220.21	5949285.69
1749204.32	5949291.07
1749209.21	5949308.86
1749209.21	5949308.88
1749219.34	5949335.81
1749219.34	
1749105.08	5949275.41 5949271.93
1749121.00	
1749135.48	5949268.79
1749150.05	5949264.99
	5949261.13
1749180.12	5949258.58
1749194.89	5949254.39
1749206.67	5949251.07
1749226.73	5949246.19
1749249.06	5949241.01 CTIONS ARE TO
RVE A FUTURE	
1749109.96	5949409.10
1749106.90	5949395.44
1749101.46	5949382.78
WING CONNI	ECTIONS WERE
ED DURING TH AGE'S CONSTR	
1749216.51	5949431.5
1749213.27	5949431.2
1749195.92	5949430.3
1749222.72	5949391.1
1749243.75	5949388.7
1749257.57	5949387.3
1749295.88	5949333.6
1749308.55	5949348.1
1749295.62	5949379.2
1749312.42	5949374.5
1749336.18	5949370.2
1749270.91	5949291.1

APPROVED

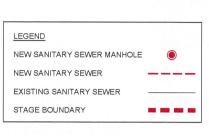
- ALL WORKS AND MATERIALS COMPLY WITH AUCKLAND COUNCIL & WATERCARE SERVICES LTD STANDARDS FOR ENGINEERING DESIGN AND CONSTRUCTION.
- 2. ALL SANITARY SEWER LINES ARE 150mmØ uPVC CLASS SN16 UNLESS STATED OTHERWISE.
- 3. ALL PIPE BEDDING COMPLIES WITH WATERCARE STANDARDS.
- 4. ALL PIPE CROSSINGS UNDER ROADS AND ACCESSWAYS HAVE BEEN HARDFILL BACKFILLED.
- 5. ALL PRIVATE LOT CONNECTIONS ARE 100mmØ
- 6. LOT BOUNDARIES ARE SUBJECT TO FINAL SURVEY
- 7. ALL PIPE AND MH DIAMETERS ARE INTERNAL, AND SHOWN IN MILLIMETERS UNLESS OTHERWISE SPECIFIED.
- ASBUILT DATA HAS BEEN SOURCED FROM A COMBINATION OF WOODS SURVEY MEASURED 8 DATA AND CONTRACTOR RECEIVED DATA.

RE	VISION D	ΒY	DATE		
1	ISSEUD FOR INFORMATION			KR	28/08/19
SURVEYED V		WOODS	١	NOODS	Ltd
DESIGNED		MB	LEVEL 1 BUILDING B, 8 NUGENT STREET, GRAFT		
DRAWN		SK	AUCKLAND 1023		0 1023
CHECKED		NC	0	9 308 9	229

MB WOODS.CO.NZ



ARRAN HILL PRECINCT 5 STAGES 4 & 3B


WASTEWATER AS-BUILT SHEET 2 OF 4

STATUS	AS BUILT	REV
SCALE	1:500 @ A3	1
COUNCIL	AUCKLAND COUNCIL	T
DWG NO	37503-04-03B-401-A	В

Lot 205

DULE OF COC	RDINATES		
Y SEWER LOT	CONNECTIONS		
EASTING	NORTHING		
1749140.62	5949452.37		
1749155.20	5949440.83		
1749175.71	5949433.05		
1749146.22	5949402.72		
1749163.53	5949397.84		
1749179.76	5949396.22		
1749178.51	5949366.96		
1749174.80	5949353.88		
1749171.07	5949339.36		
1749148.13	5949375.23		
1749144.40	5949361.89		
1749141.58	5949344.63		
1749129.33	5949333.77		
1749145.45	5949328.94		
1749165.40	5949324.17		
1749223.42	5949365.70		
1749254.47	5949356.67		
1749252.01	5949344.80		
1749247.89	5949330.09		
1749247.55	5949306.37		
1749246.47	5949289.05		
1749220.21	5949285.69		
1749204.32	5949291.07		
1749209.21	5949308.86		
1749216.28	5949333.81		
1749219.34	5949349.38		
1749105.08	5949275.41		
1749121.00	5949271.93		
1749135.48	5949268.79		
1749150.05	5949264.99		
1749164.75	5949261.13		
1749180.12	5949258.58		
1749194.89	5949254.39		
1749206.67	5949251.07		
1749226.73	5949246.19		
1749249.06	5949241.01		
WING CONNE	CTIONS ARE TO		
RVE A FUTURE	STAGE		
1749109.96	5949409.10		
1749106.90	5949395.44		
1749101.46	5949382.78		
DWING CONNI ED DURING TH	ECTIONS WERE HE PREVIOUS		
AGE'S CONSTR	UCTION		
1749216.51	5949431.5		
1749213.27	5949431.2		
1749195.92	5949430.3		
1749222.72	5949391.1		
1749243.75	5949388.7		
1749257.57	5949387.3		
1749295.88	5949333.6		
1749308.55	5949348.1		
1749295.62	5949379.2		
1749312.42	5949374.5		
1749336.18	5949370.2		
1749270.91	5949291.1		
15			
7			
00.07	1500 3.4m		
V .	150.0 16.34m @ 1.35%		
2 25.10			
5SM	H B/5		
1350 LL=2	7.64		
N % 1749	255.92mE		
ຜູ້ 5949237.39mN ຜ			
0			
00			
15(

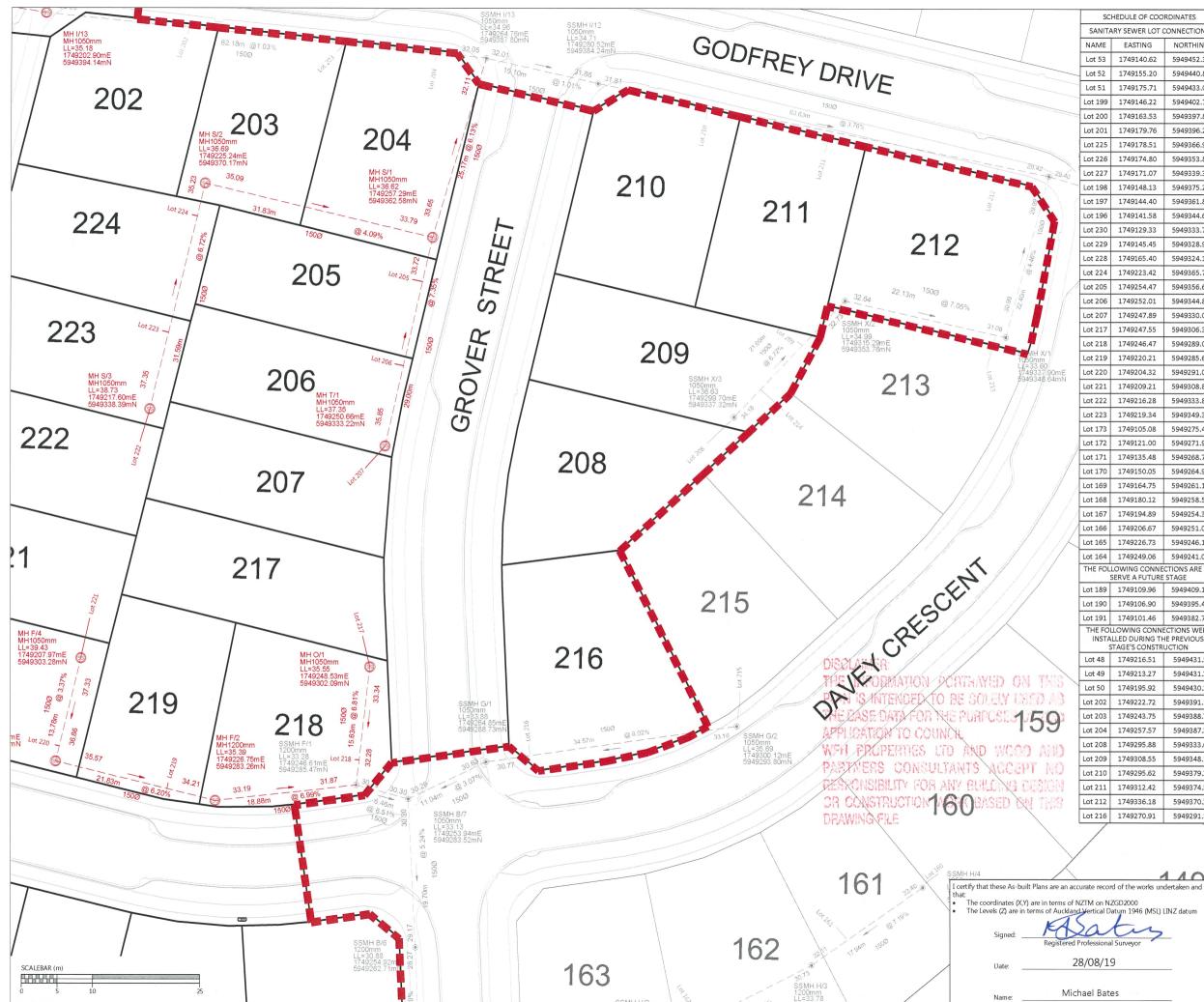
WOODS

Est-1970

NOTES

- ALL WORKS AND MATERIALS COMPLY WITH AUCKLAND COUNCIL & WATERCARE SERVICES LTD STANDARDS FOR ENGINEERING DESIGN AND CONSTRUCTION.
- 2. ALL SANITARY SEWER LINES ARE 150mmØ uPVC CLASS SN16 UNLESS STATED OTHERWISE.
- 3. ALL PIPE BEDDING COMPLIES WITH WATERCARE STANDARDS.
- ALL PIPE CROSSINGS UNDER ROADS AND ACCESSWAYS HAVE BEEN HARDFILL BACKFILLED.
- 5. ALL PRIVATE LOT CONNECTIONS ARE 100mmø
- LOT BOUNDARIES ARE SUBJECT TO FINAL SURVEY.
- 7. ALL PIPE AND MH DIAMETERS ARE INTERNAL, AND SHOWN IN MILLIMETERS UNLESS OTHERWISE SPECIFIED.
- ASBUILT DATA HAS BEEN SOURCED FROM A COMBINATION OF WOODS SURVEY MEASURED DATA AND CONTRACTOR RECEIVED DATA.

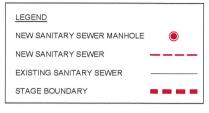
RE	VISION D	ETAILS		BY	DATE			
1	ISSEUD	FOR INFORM	ATION	KR	28/08/19			
é.L								
SU	RVEYED	WOODS	WOODS Ltd LEVEL 1 BUILDING B, 8 NUGENT STREET, GRAFTON					
DE	SIGNED	MB						
DR	AWN	SK	AUCKLAND 1023					
CH	IECKED	NC		09 308 9	229			
AP	PROVED	MB	WOOD	S.CO.N	IZ			



ARRAN HILL PRECINCT 5 STAGES 4 & 3B

WASTEWATER AS-BUILT SHEET 3 OF 4

STATUS	AS BUILT	REV		
SCALE	1:500 @ A3	1		
COUNCIL	AUCKLAND COUNCIL	T		
DWG NO 37503-04-03B-402-AB				

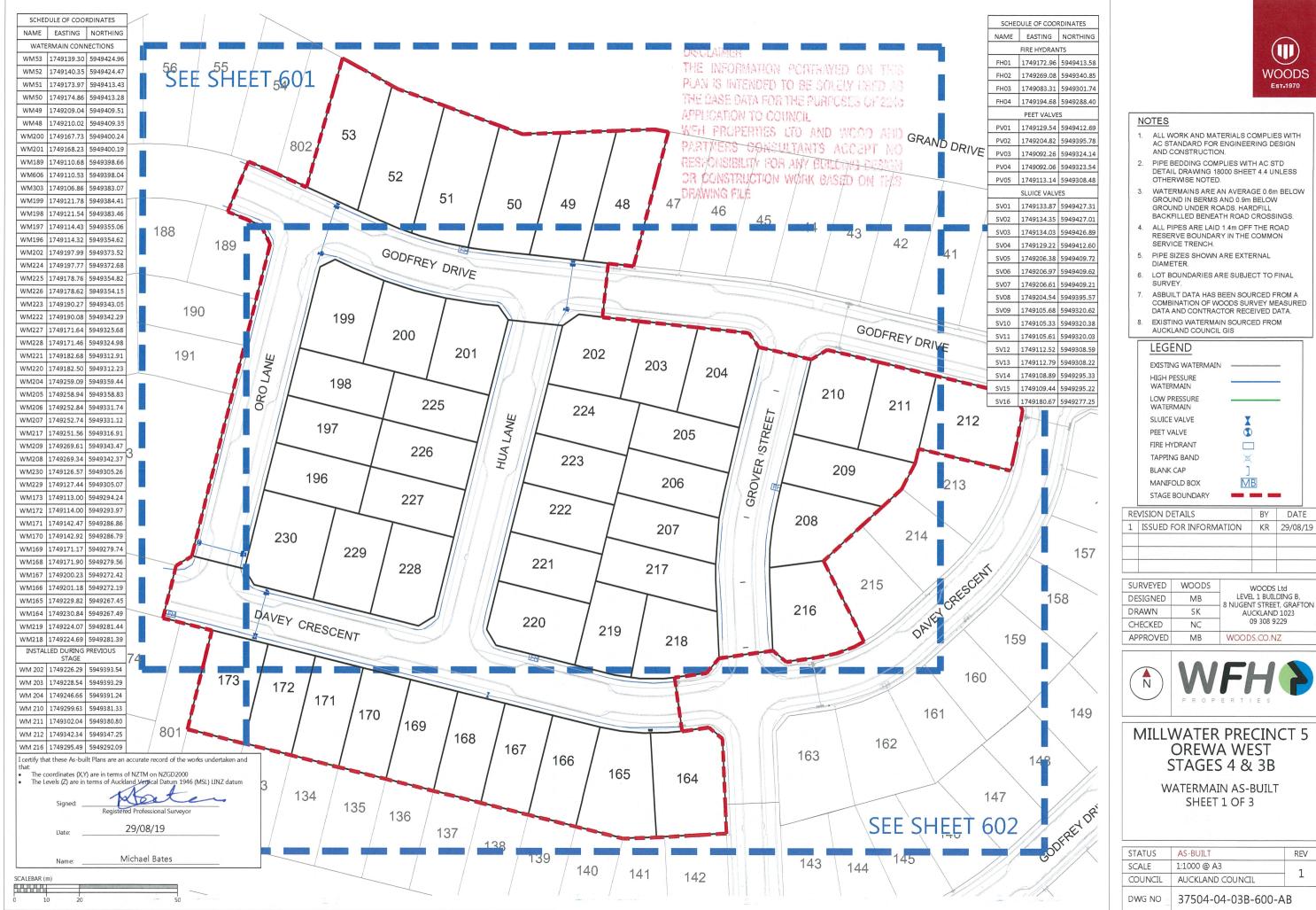

o. K\37504-ARRAN HILL PRECINCT 5 STAGE 4\DRAWINGS\SURV\AS-BUILT\4 & 3B\37504_P5_04_03B_SEWER.DWG

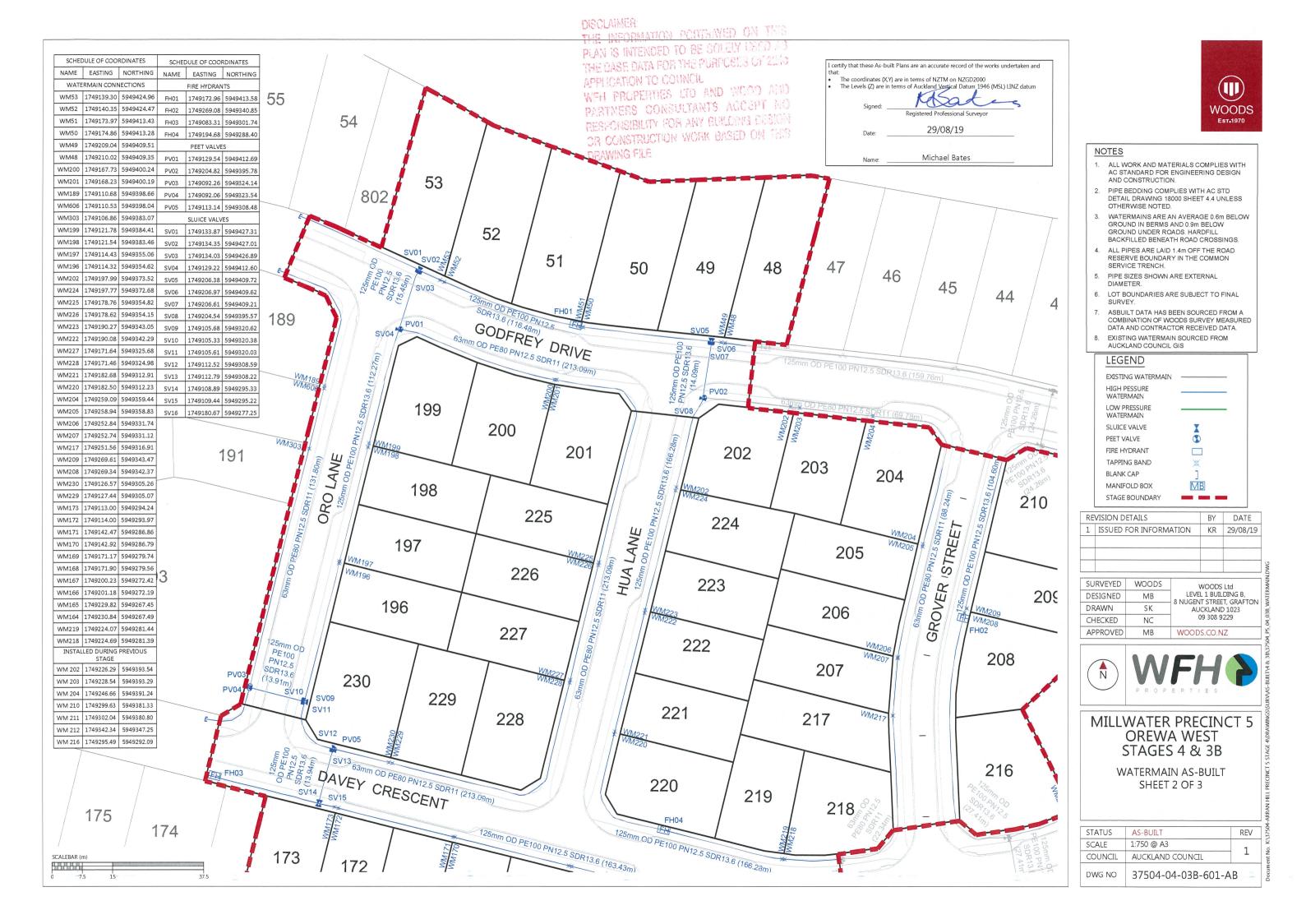
DULE OF COO	RDINATES
Y SEWER LOT	CONNECTIONS
EASTING	NORTHING
1749140.62	5949452.37
1749155.20	5949440.83
1749175.71	5949433.05
1749146.22	5949402.72
1749163.53	5949397.84
1749179.76	5949396.22
1749178.51	5949366.96
1749174.80	5949353.88
1749171.07	5949339.36
1749148.13	5949375.23
1749144.40	5949361.89
1749141.58	5949344.63
1749129.33	5949333.77
1749145.45	5949328.94
1749165.40	5949324.17
1749223.42	5949365.70
1749254.47	5949356.67
1749252.01	5949344.80
1749247.89	5949330.09
1749247.55	5949306.37
1749246.47	5949289.05
1749220.21	5949285.69
1749204.32	5949291.07
1749209.21	5949308.86
1749216.28	5949333.81
1749219.34	5949349.38
1749105.08	5949275.41
1749121.00	5949271.93
1749135.48	5949268.79
1749150.05	5949264.99
1749164.75	5949261.13
1749180.12	5949258.58
1749194.89	5949254.39
1749194.89	5949251.07
1749226.73	5949246.19
1749249.06	5949241.01
	CTIONS ARE TO
RVE A FUTURE	STAGE
1749109.96	5949409.10
1749106.90	5949395.44
1749101.46	5949382.78
ED DURING TH	ECTIONS WERE HE PREVIOUS
AGE'S CONSTR	UCTION
1749216.51	5949431.5
1749213.27	5949431.2
1749195.92	5949430.3
1749222.72	5949391.1
1749243.75	5949388.7
1749257.57	5949387.3
1749295.88	5949333.6
1749308.55	5949348.1
1749295.62	5949379.2
1749312.42	5949374.5
1749336.18	5949370.2
1749270.91	5949291.1

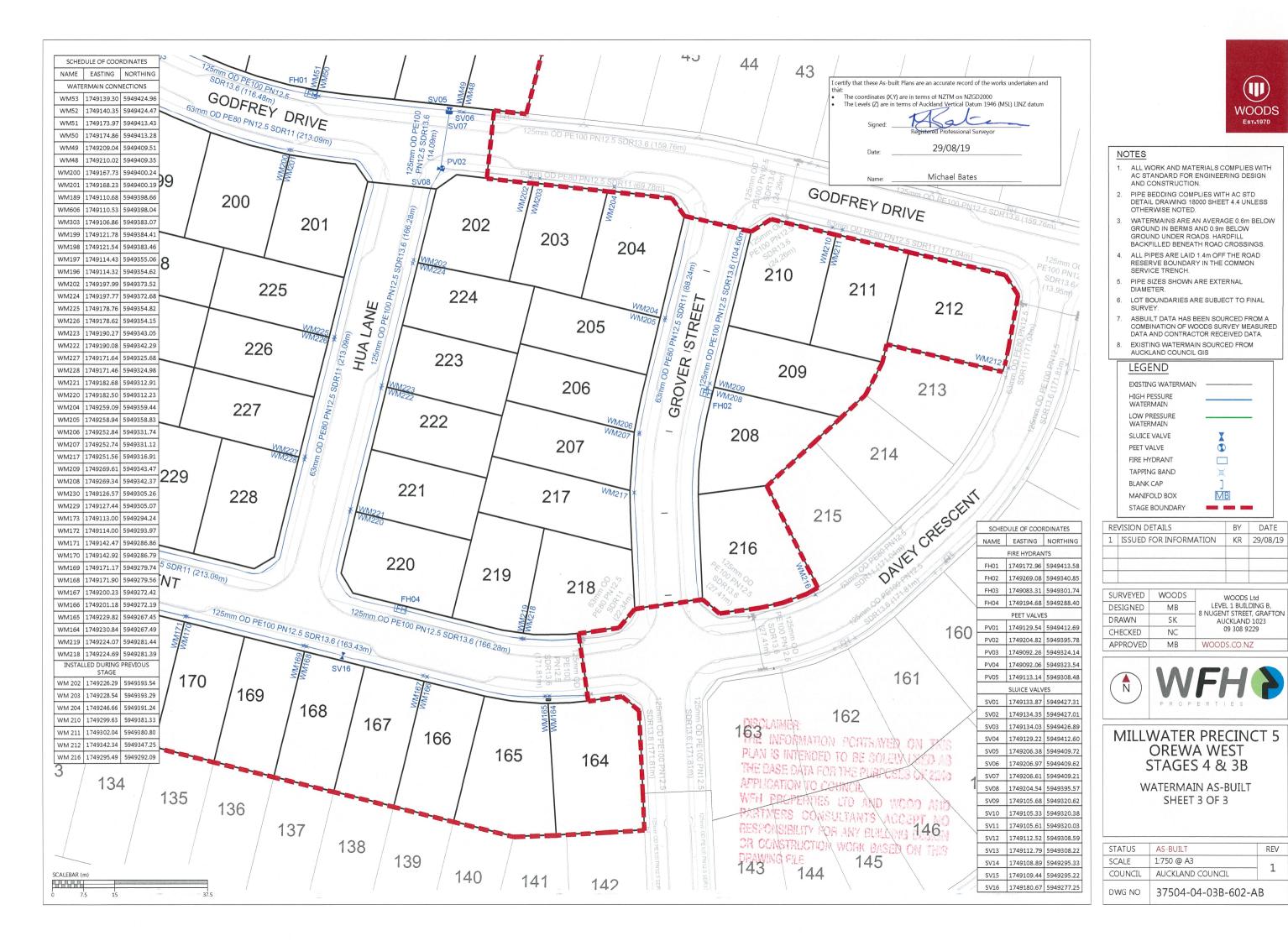
110

NOTES

- ALL WORKS AND MATERIALS COMPLY WITH AUCKLAND COUNCIL & WATERCARE SERVICES LTD STANDARDS FOR ENGINEERING DESIGN AND CONSTRUCTION
- 2. ALL SANITARY SEWER LINES ARE 150mmØ uPVC CLASS SN16 UNLESS STATED OTHERWISE.
- ALL PIPE BEDDING COMPLIES WITH WATERCARE STANDARDS.
- ALL PIPE CROSSINGS UNDER ROADS AND ACCESSWAYS HAVE BEEN HARDFILL BACKELLED
- 5. ALL PRIVATE LOT CONNECTIONS ARE 100mmø
- 6. LOT BOUNDARIES ARE SUBJECT TO FINAL SURVEY
- ALL PIPE AND MH DIAMETERS ARE INTERNAL, AND SHOWN IN MILLIMETERS UNLESS OTHERWISE SPECIFIED.
- ASBUILT DATA HAS BEEN SOURCED FROM A COMBINATION OF WOODS SURVEY MEASURED DATA AND CONTRACTOR RECEIVED DATA.


REVISION DETAILS BY DATE									
1	ISSEUD I	FOR INFORM	ATION	KR	28/08/19				
			1						
SU	RVEYED	WOODS	WOODS Ltd						
DE	SIGNED	MB	LEVEL 1 BUILDING B, 8 NUGENT STREET, GRAFTON AUCKLAND 1023						
DR	AWN	KR							
CH	IECKED	NC		9 308 9	229				
AP	PROVED	MB	WOOD	S.CO.N	Z				




ARRAN HILL PRECINCT 5 STAGES 4 & 3B

WASTEWATER AS-BUILT SHEET 4 OF 4

STATUS	AS BUILT	REV			
SCALE	1:500 @ A3	1			
COUNCIL	AUCKLAND COUNCIL	L L			
DWG NO	VG NO 37503-04-03B-403-AB				

Vo. K\37504-ARRAN HILL PRECINCT 5 STAGE 4\DRAWINGS\SURV\AS-BUILI\4 & 3B\37504_P5_04_03B_WATERMAIN.DWG

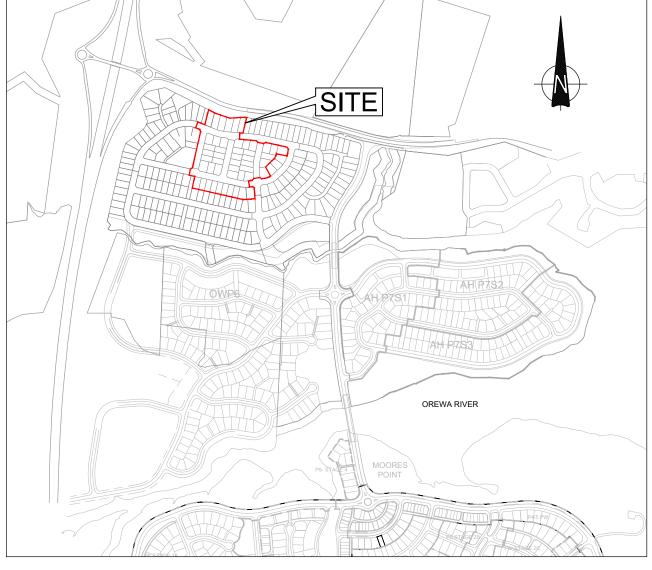
Appendix A2: T+T Drawings

- 21854.0031-AHP5S3B&4-100
- · 21854.0031-AHP5S3B&4-101
- 21854.0031–AHP5S3B&4–102
- 21854.0031–AHP5S3B&4–103
 21854.0031–AHP5S3B&4–104
- 21854.0031-AHP5S3B&4-110
- · 21854.0031-AHP5S3B&4-111
- 21854.0031–AHP5S3B&4–112 (3m<H≤4.7m)
- 21854.0031–AHP5S3B&4–113
- · 21854.0031-AHP5S3B&4-114
- 21854.0031–AHP5S3B&4–115
- 21854.0031–AHP5S3B&4–120

Drawing List and Location Plan

- Geotechnical Works Plan
- Geotechnical Works Subsoil Drain Plan
- Geological Cross Sections 1 & 2
- Geological Cross Sections 3 & 4
- Retaining Wall 06 Plan and Elevation
 - Retaining Wall 06 Typical Section (H<3m)
 - Retaining Wall 06 Typical Section
 - RE Slope 5 Typical Section
 - RE Slope 7 Typical Section (Sheet 1)
- RE Slope 7 Typical Section (Sheet 2)
- **Building Limitation Plan**

Retaining Wall 6 Construction Drawings (BCO-10270225)


	21854.0031-P5-101	Geotechnical Works Plan – Retaining Walls and RE Slopes
	21854.0031-P5-102	Geotechnical Works Plan – Subsoil Drainage
•	21854.0031-P5-103	Geotechnical Works Plan – Shear Keys, Undercuts & Piles
•	21854.0031-P5-124	Retaining Wall 06 – Plan and Elevation
•	21854.0031-P5-125	Retaining Walls 05 and 06 – Typical Section (H<=3m)
•	21854.0031-P5-126	Retaining Walls 05 and 06 – Typical Section (3m <h<=4.2m)< td=""></h<=4.2m)<>
	21854.0031-P5-143	Outlet Drain Detail
	21854.0031-P5-144	Safety Fence Detail

WFH PROPERTIES LTD **MILLWATER - ARRANS HILL** PRECINCT 5 STAGE 3B & 4 **COMPLETION REPORT ISSUE**

DRAWING

Rev Title

GENERAL		
• 21854.0031-AHP5S3B&4-100	1	DRAWING LIST AND LOCATION PLAN
• 21854.0031-AHP5S3B&4-101	1	GEOTECHNICAL WORKS PLAN
• 21854.0031-AHP5S3B&4-102	1	GEOTECHNICAL WORKS SUBSOIL DRAIN PLAN
• 21854.0031-AHP5S3B&4-103	1	GEOLOGICAL CROSS SECTIONS 1 & 2
• 21854.0031-AHP5S3B&4-104	1	GEOLOGICAL CROSS SECTIONS 3 & 4
• 21854.0031-AHP5S3B&4-110	1	RETAINING WALL 06 - PLAN AND ELEVATION
• 21854.0031-AHP5S3B&4-111	1	RETAINING WALLS 06 - TYPICAL SECTION (H≤3m)
• 21854.0031-AHP5S3B&4-112	1	RETAINING WALL 06 - TYPICAL SECTION (3m <h≤ 4.7m)<="" td=""></h≤>
• 21854.0031-AHP5S3B&4-113	1	RE SLOPE 5 - TYPICAL SECTION
• 21854.0031-AHP5S3B&4-114	1	RE SLOPE 7 - TYPICAL SECTION (SHEET 1)
• 21854.0031-AHP5S3B&4-115	1	RE SLOPE 7 - TYPICAL SECTION (SHEET 2)
• 21854.0031-AHP5S3B&4-120	1	BUILDING LIMITATION PLAN
• 21854.0031-AHP5S3B&4-121	1	POST EARTHWORKS INVESTIGATION PLAN
• 21854.0031-AHP5S3B&4-122	1	TOPSOIL DEPTHS PLAN
• 21854.0031-AHP5S3B&4-123	1	EARTHWORKS TESTING LOCATION PLAN

LOCATION PLAN SCALE 1:10,000

DRAWING STATUS

COMPLETION REPORT

THIS DRAWING IS NOT TO BE USED FOR CONSTRUCTION PURPOSES UNLESS SIGNED AS APPROVED

• Denotes drawing this issue: 02/09/2019

COMPLETION REPORT ISSUE

JC CAD CHK DATE DESIGNED

DESIGN CHECKED

DRAWING CHECKED

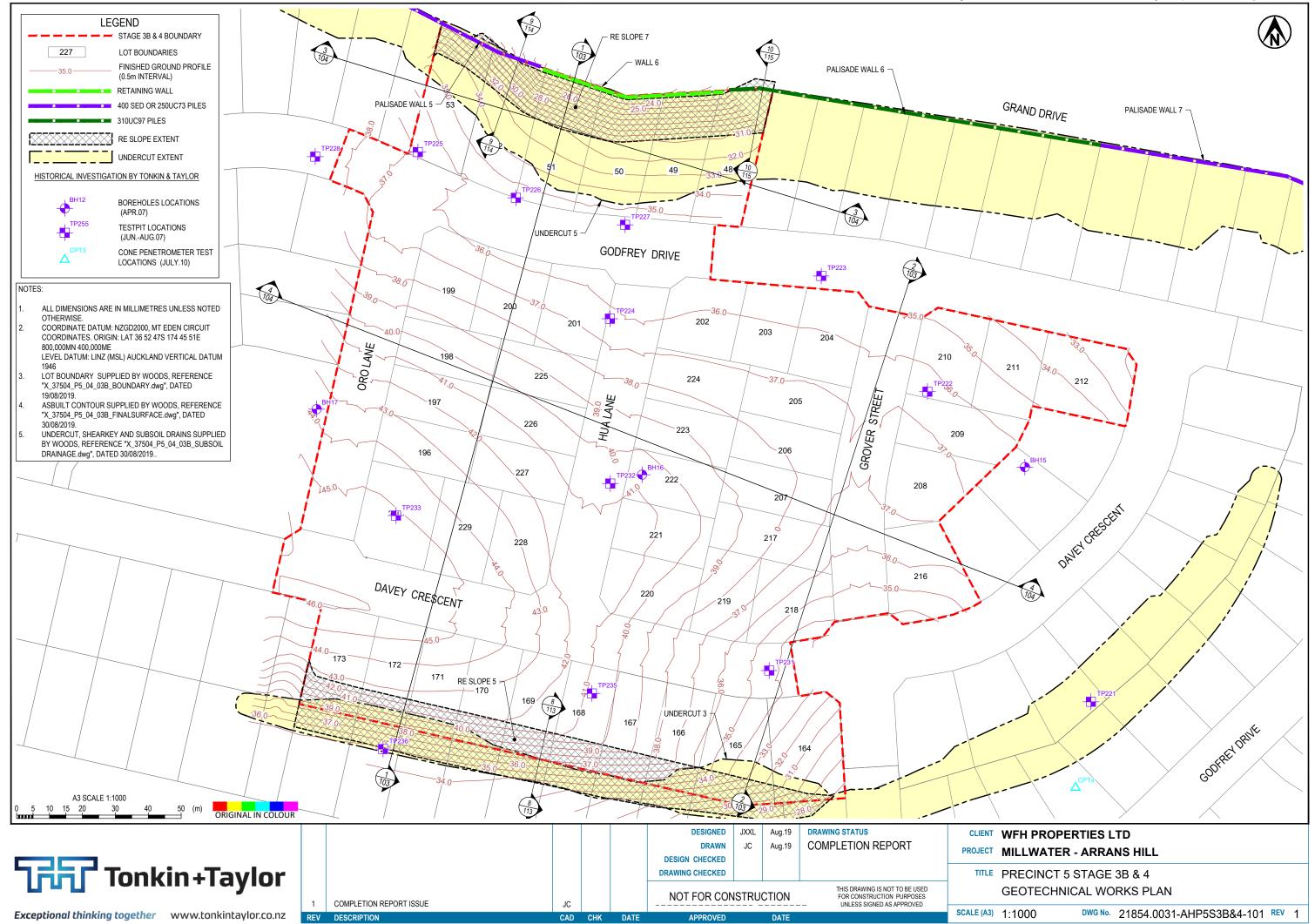
DRAWN

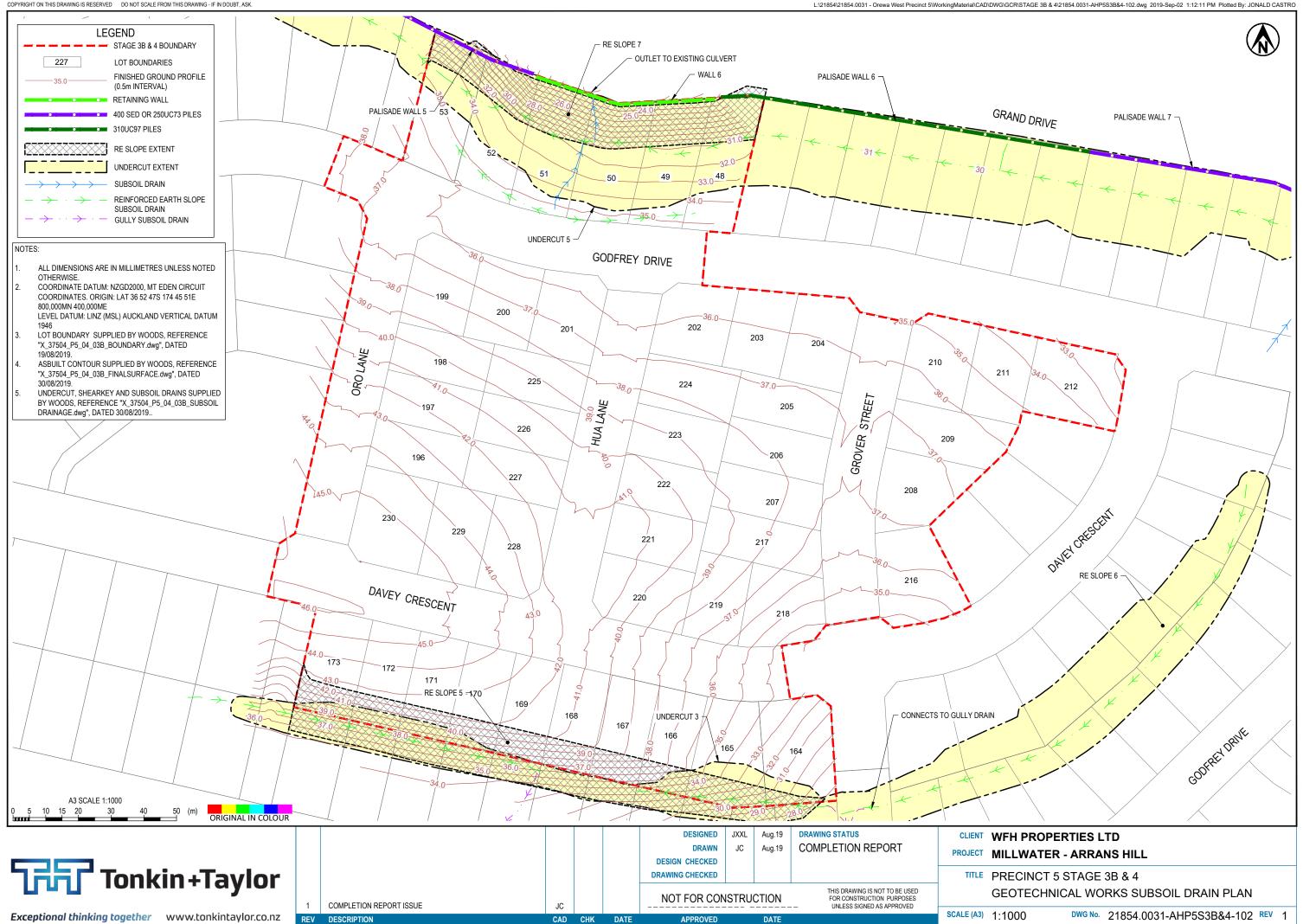
NOT FOR CONSTRUCTION

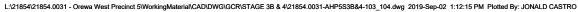
JXXL

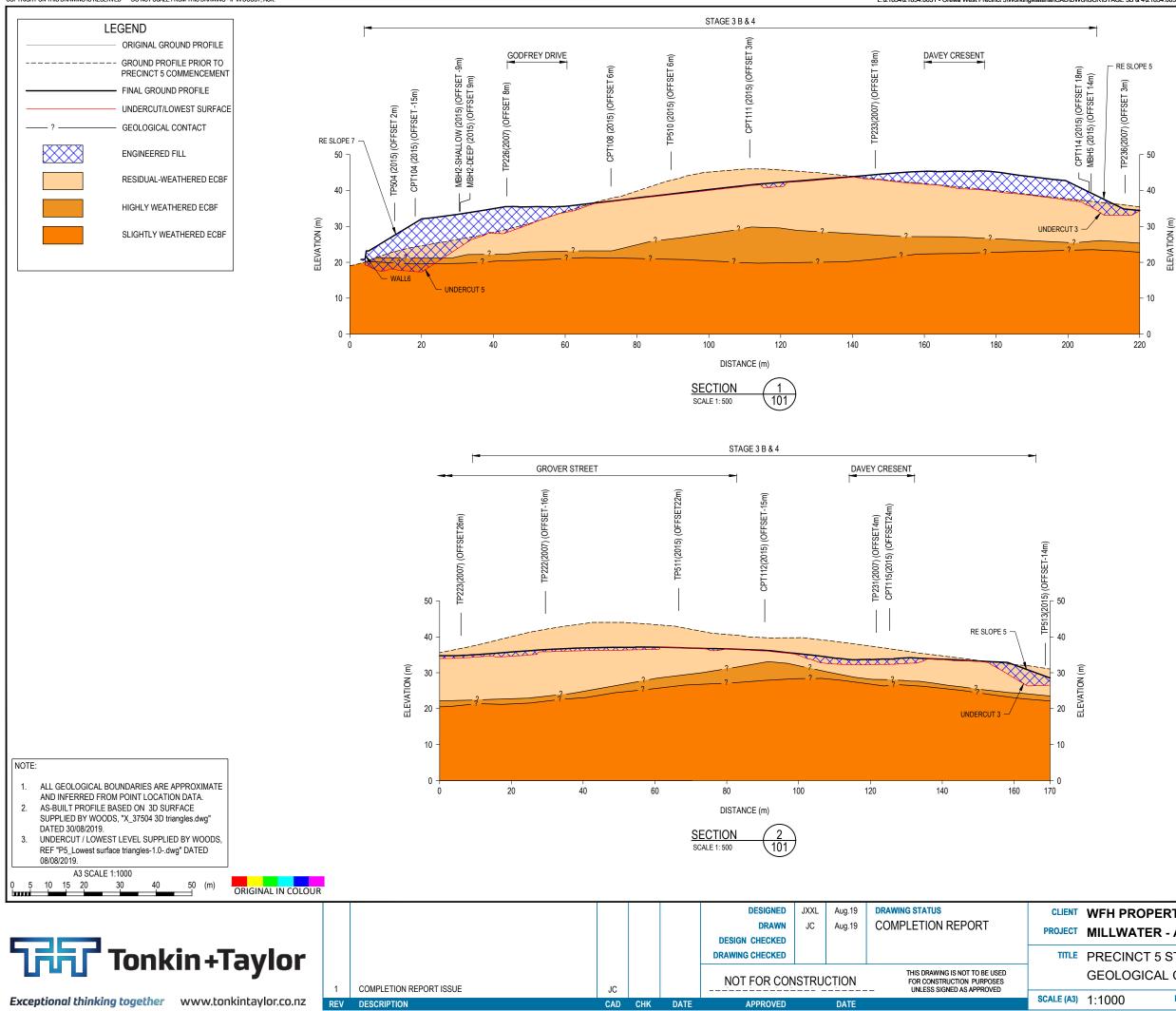
JC

Aug.19

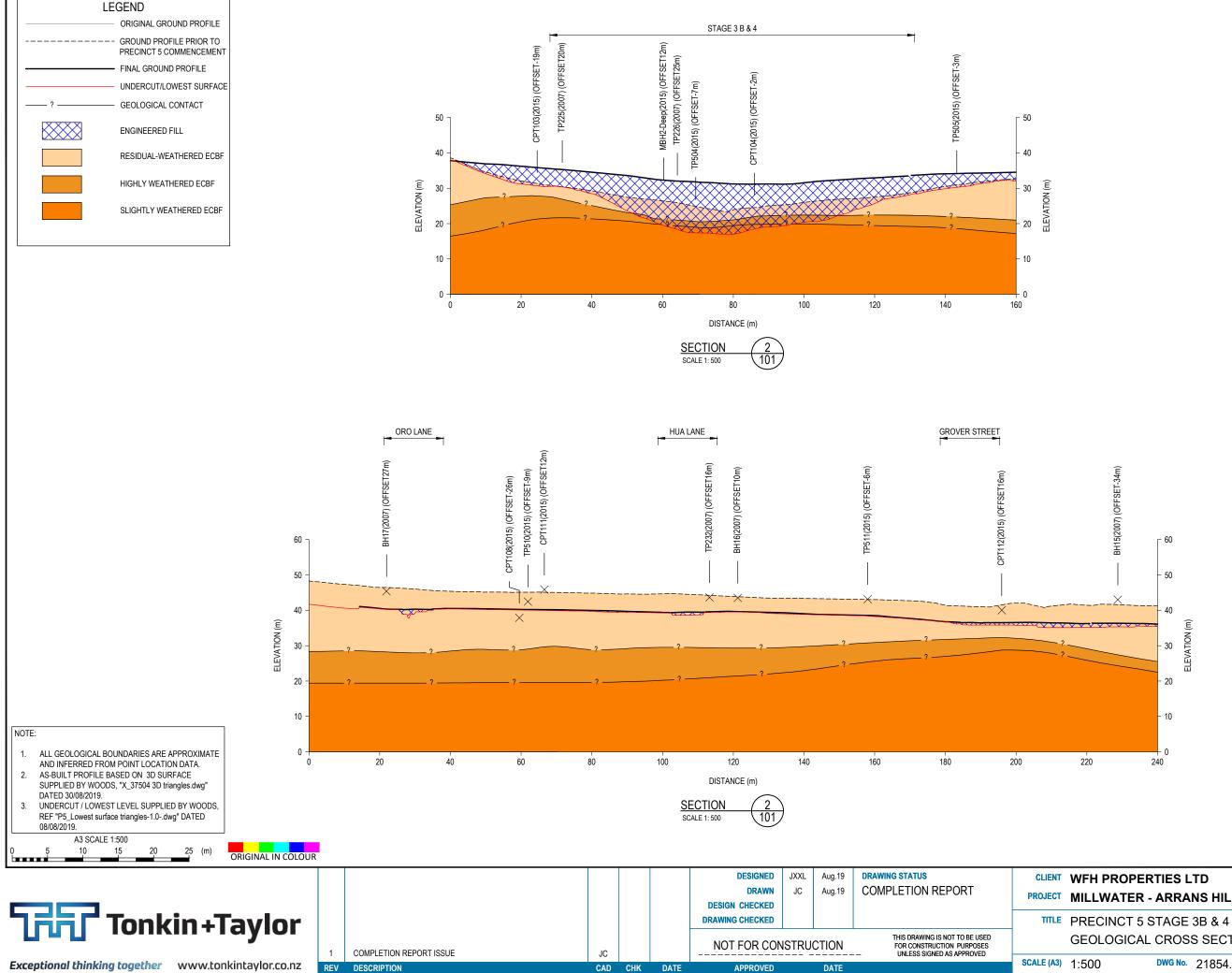

Aug.19




CLIENT WFH PROPERTIES LTD PROJECT MILLWATER - ARRANS HILL


TITLE PRECINCT 5 STAGE 3B & 4 DRAWING LIST AND LOCATION PLAN

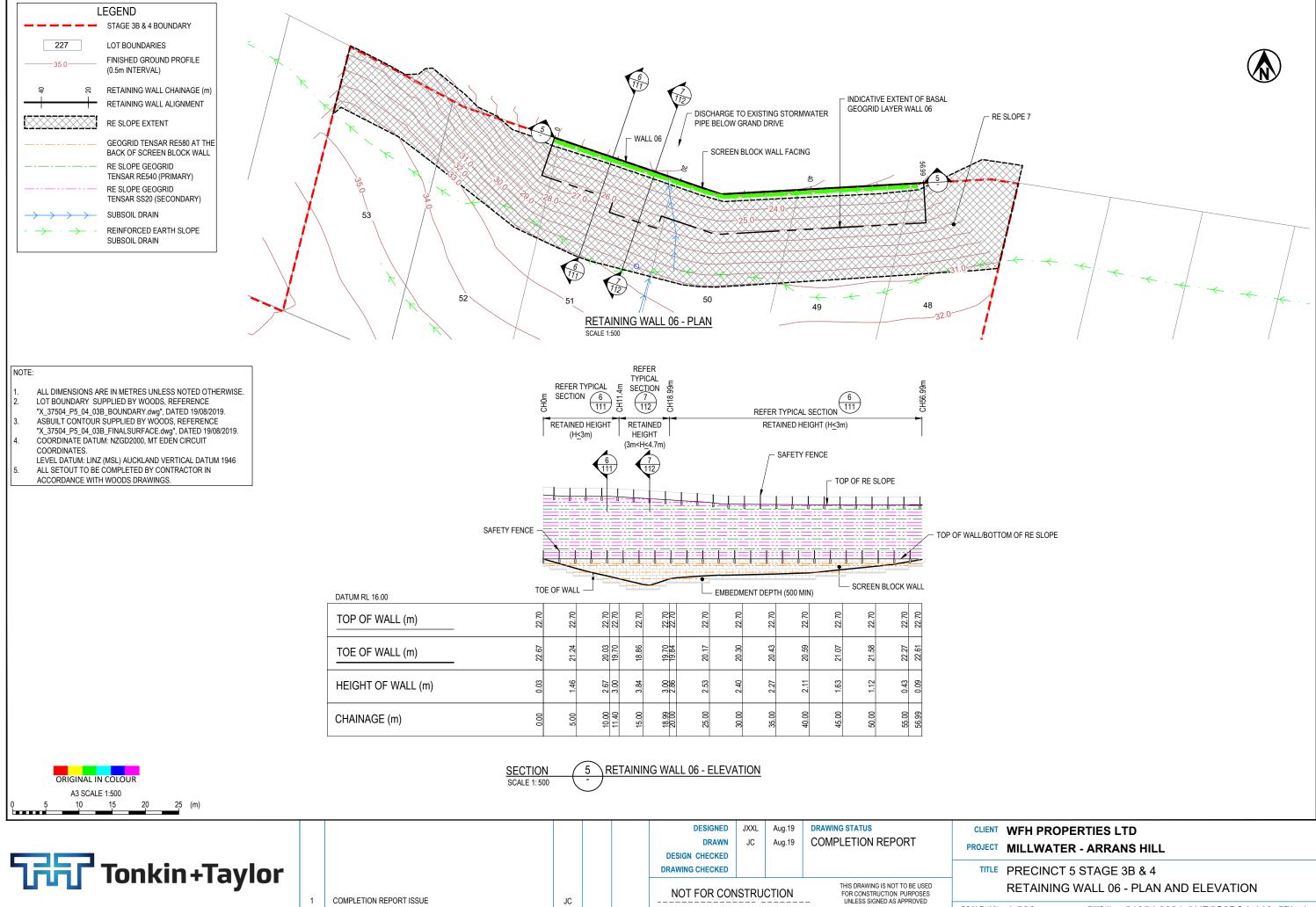
DWG No. 21854.0031-AHP5S3B&4-100 REV 1 SCALE (A3) 1:10,000



CLIENT WFH PROPERTIES LTD PROJECT MILLWATER - ARRANS HILL

TITLE PRECINCT 5 STAGE 3B & 4 **GEOLOGICAL CROSS SECTIONS 1 & 2**

DWG No. 21854.0031-AHP5S3B&4-103 REV 1



PROJECT MILLWATER - ARRANS HILL

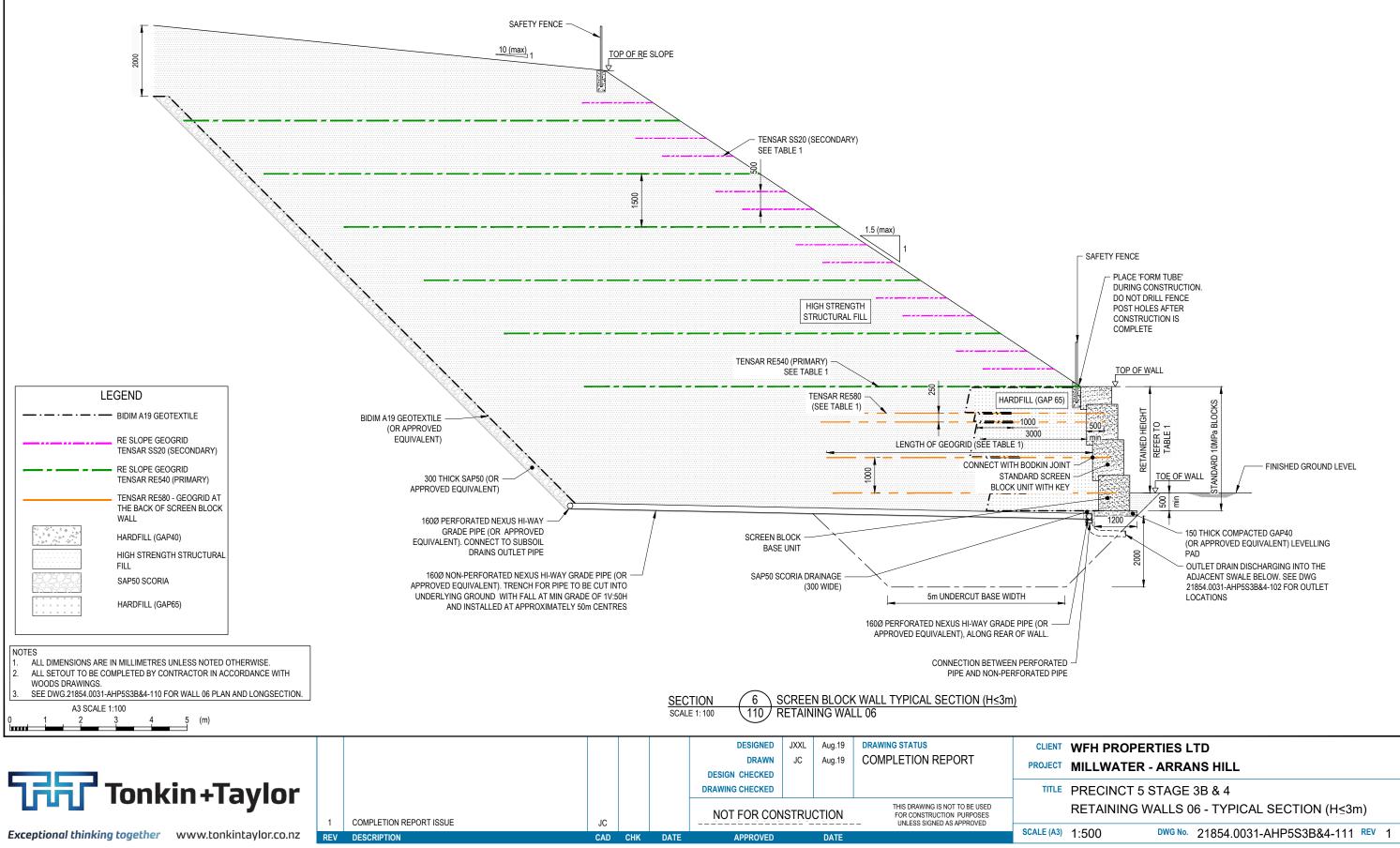
GEOLOGICAL CROSS SECTIONS 3 & 4

DWG No. 21854.0031-AHP5S3B&4-104 REV 1

COMPLETION REPORT ISSUE REV DESCRIPTION

CAD CHK DATE

JC



SCALE (A3) 1:500

DWG No. 21854.0031-AHP5S3B&4-110 REV 1

TABLE 1: RETAINING WALL 06 (H≤3m) DETAIL TABLE

GEOGRID REQUIREMENTS									
WALL TYPE	TOTAL SLOPE/ RETAINED HEIGHT (m)	(m) MAX MAX FORWARD BACKSLOPE SLOPE				VERTICAL LOCATION ABOVE TOE OF WALL (m)			
SCREEN BLOCK	H ≤ 3	1V:1.5H	0°	TENSAR RE580	8.0	0.0, 1.0, 2.0, 2.25			
						MAX VERTICAL SPACING (m)			
RE SLOPE	8 < H ≤ 9	1V:10H	N//A	TENSAR RE540 (PRIMARY)	14.0	1.5			
RE SLOPE	0 < H ≤ 9	10.100	N/A	TENSAR SS20 (SECONDARY)	2.0	0.5			

			Г	TABLE 2: RET	AINING WALL 06 (3m <h≤4.7m)< th=""><th>DETAIL TABLE</th><th></th><th>OGRII</th></h≤4.7m)<>	DETAIL TABLE		OGRII
			-	WALL TYPE	TOTAL SLOPE/ RETAINED HEIGHT (m)	MAX BACKSLOPE	MAX FORWARD SLOPE	
				SCREEN BLOCK	H ≤ 4.7	1V:1.5H	0°	
				RE SLOPE	8 < H ≤ 9	1V:10H	N/A	TE
BDM AF	A19 GEOTEXTILE (OR PPROVED EQUIVALENT)	AFETY FENCE 1 1		SEE TABLE 2	0 (SECONDARY)	520		
LEGEND — · — · — · — BIDIM A19 GEOTEXTILE — RE SLOPE GEOGRID TENSAR SS20 (SECONDARY)	300 THICK SAP50 (OR APPROVED EQUIVALENT)			(SEE TABLE 2)	LENGTH OF GEOG	CONNECT WIT	ARDFILL (GAP 65) 1000 3000 H BODKIN JOINT - 2) TANDARD SCREEN CK UNIT WITH KEY	
RE SLOPE GEOGRID TENSAR RE540 (PRIMARY) TENSAR RE580 - GEOGRID AT THE BACK OF SCREEN BLOCK WALL HARDFILL (GAP40)	160Ø PERFORATED NEXUS HI-WAY GRADE PIPE (OR APPROVED EQUIVALENT). CONNECT TO SUBSOIL DRAINS OUTLET PIPE			SCREEN BLC UNIT (30 MP SAP50 5		5m UNDERCUT B	ASE WIDTH	
HIGH STRENGTH STRUCTURAL FILL SAP50 SCORIA HARDFILL (GAP65)	160Ø NON-PERFORATED NEX APPROVED EQUIVALENT). TRENC UNDERLYING GROUND WITH FA AND INSTALLED AT APP	CH FOR PIPE TO BE ALL AT MIN GRADE	CUT INTO OF 1V:50H		160Ø PERFORATED NEX APPROVED EQUIVAL	ENT), ALONG REA		
NOTES 1. ALL DIMENSIONS ARE IN MILLIMETRES UNLESS NOTED OTHERWISE 2. ALL SETOUT TO BE COMPLETED BY CONTRACTOR IN ACCORDANCE WOODS DRAWINGS. 3. SEE DWG.21854.0031-AHP5S3B&4-110 FOR WALL 06 PLAN AND LONG A3 SCALE 1:125 0 1 2 3 4 5 6 7 (m)	E WITH SECTIO		SCREEN BLOCK	WALL TYPIC - 06	AL SECTION (3m <h≤< th=""><th>PIPE AND NON-</th><th>PERFORATED PIPE</th><th></th></h≤<>	PIPE AND NON-	PERFORATED PIPE	
TRAC Tonkin+Tayl	lor		DESIGNE DRAW DESIGN CHECKE DRAWING CHECKE	N JC AL	Ig.19 DRAWING STATUS Ig.19 COMPLETION	REPORT	CLIEN PROJEC TITL	

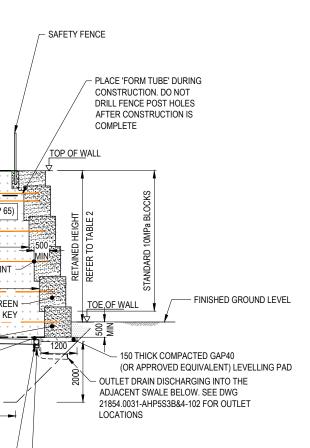
JC

CAD CHK

DATE

IONKIN+Iaylor

1


REV DESCRIPTION

COMPLETION REPORT ISSUE

Exceptional thinking together www.tonkintaylor.co.nz

DWG\GCR\STAGE 3B & 4\21854.0031-AHP5S3B&4-112.dwg	2019-Sep-02	1:12:29 PM	Plotted By: JONALD CASTRO
121001001101110E 0D 0 4121004.000114111 000D04-112.0Wg	2010-0cp-02	1.12.201 101	TIORED BY. CONTRACT ONOTINO

GEOC	GEOGRID REQUIREMENTS							
/ARD	GEOGRID TYPE	GEOGRID LENGTH (m)	VERTICAL LOCATION ABOVE TOE OF WALI (m)					
		10.0	-0.5, 0.5, 1.5, 2.5					
	TENSAR RE580	8.0	3.25, 3.75, 4.5					
			MAX VERTICAL SPACING (m)					
	TENSAR RE540 (PRIMARY)	16.0	1.5					
	TENSAR SS20 (SECONDARY)	2.0	0.5					

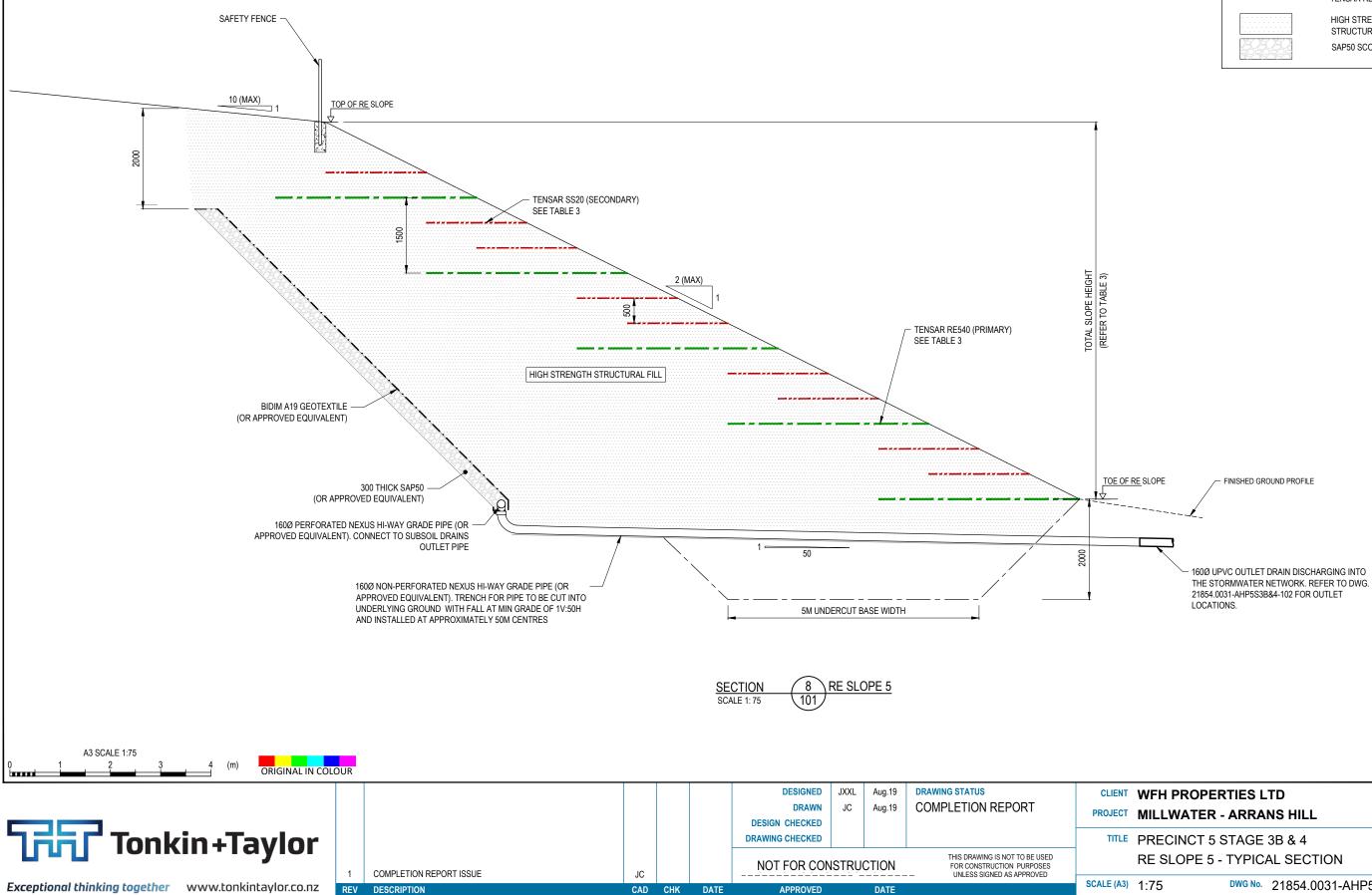
CLIENT WFH PROPERTIES LTD ROJECT MILLWATER - ARRANS HILL

TITLE PRECINCT 5 STAGE 3B & 4 RETAINING WALL 06 - TYPICAL SECTION (3m<H≤ 4.7m)

SCALE (A3) 1:500

THIS DRAWING IS NOT TO BE USED FOR CONSTRUCTION PURPOSES UNLESS SIGNED AS APPROVED

NOT FOR CONSTRUCTION

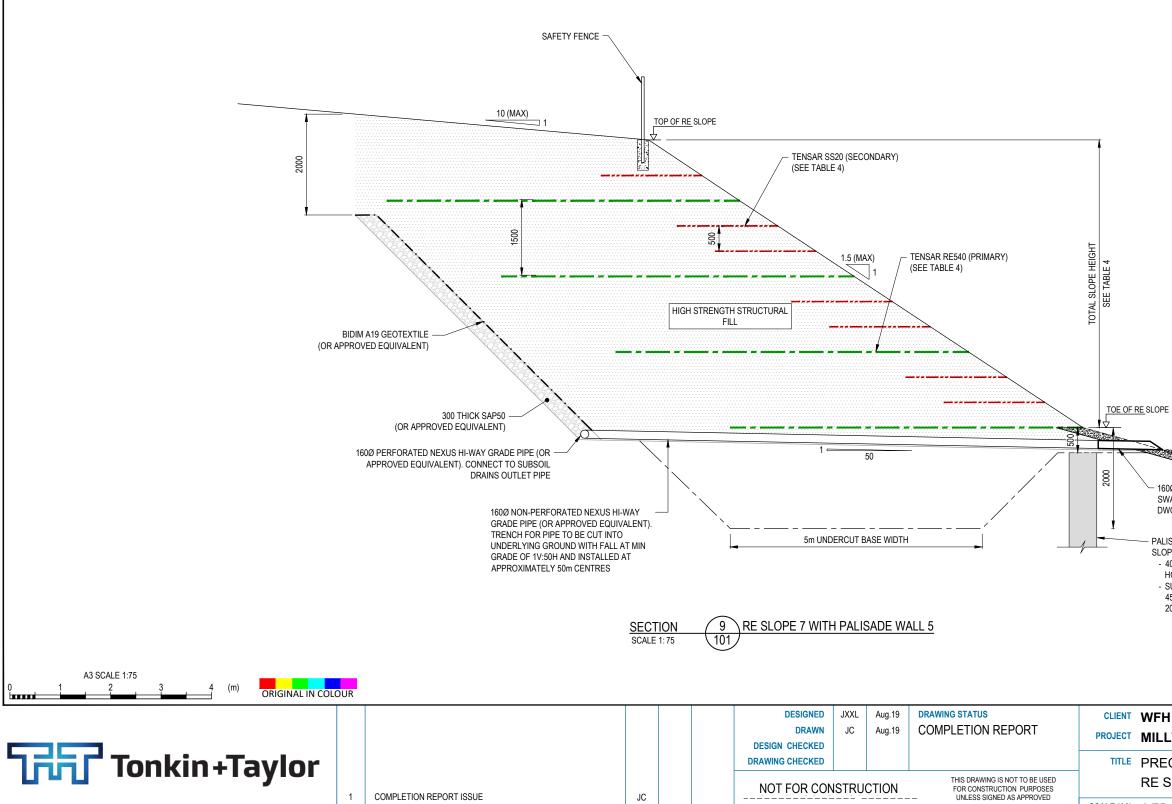

DATE

APPROVED

DWG No. 21854.0031-AHP5S3B&4-112 REV 1

TABLE 8: REINFORCEMENT DETAIL FOR RE SLOPE 5

				MAX FORWARD MAX BACK		GEOGRID REQUIREMENTS			
WALL TYPE	SLOPE HEIGHT (m)	MAX SLOPE	SLOPE	SLOPE	GEOGRID TYPE	GEOGRID LENGTH (m)	MAX VERTICAL SPACING (m)		
					TENSAR RE540	4.0	1.5		
RE SLOPE 5	H ≤ 8	1V:2H	1V:10H	1V:10H	TENSAR SS20	2.0	0.5		



L:21854/21854.0031 - Orewa West Precinct 5\WorkingMaterial(CAD)DWG\GCR\STAGE 3B & 4/21854.0031-AHP5S3B&4-113_115.dwg 2019-Sep-02 1:12:34 PM Plotted By: JONALD CASTRO

NOTES ALL DIMENSIONS ARE IN MILLIMETRES UNLESS NOTED OTHERWISE. WALL SETOUT AS PROVIDED BY WOODS AND CONFIRMED ON SITE BY THE ENGINEER. 2. SEE DWG.21854.0031-AHP5S3B&4-101 FOR RE SLOPE 7 PLAN. LEGEND BIDIM A19 GEOTEXTILE TENSAR SS20 (SECONDARY) TENSAR RE540 (PRIMARY) HIGH STRENGTH STRUCTURAL FILL SAP50 SCORIA

DWG No. 21854.0031-AHP5S3B&4-113 REV 1

TABLE 4: REINFORC	EMENT DETAIL FOR RE SLOP	E 7							
	MAXIMUM TOTAL			GEOGRID REQUIREMENTS					
WALL TYPE	SLOPE HEIGHT (m)	MAX SLOPE	MAX BACK SLOPE	GEOGRID TYPE	GEOGRID LENGTH (m)	MAX VERTICAL SPACING (m)			
	11.45		41/ 4011	TENSAR RE540	4.0	1.5			
	H ≤ 5	1V:1.5H	1V:10H	TENSAR SS20	2.0	0.5			
		414 511	11/ 10/1	TENSAR RE540	7.0	1.5			
RE SLOPE 7	5 < H ≤ 7	1V:1.5H	1V:10H	TENSAR SS20	2.0	0.5			
		0//	1V:10H	TENSAR RE540	11.0	1.5			
	7 < H ≤ 9	1V:1.5H		TENSAR SS20	2.0	0.5			
	9 <h≤11 1v:1.<="" td=""><td>1V:1.5H</td><td>1V:10H</td><td>TENSAR RE540</td><td>14.0</td><td>1.5</td></h≤11>	1V:1.5H	1V:10H	TENSAR RE540	14.0	1.5			
	311211	11.1.011		TENSAR SS20	2.0	0.5			

JC

CAD CHK

DATE

Čenera de la constanta de la const

REV DESCRIPTION

COMPLETION REPORT ISSUE

NOT FOR CONSTRUCTION

APPROVED

ALL DIMENSIONS ARE IN MILLIMETRES UNLESS NOTED OTHERWISE. WALL SETOUT AS PROVIDED BY WOODS AND CONFIRMED ON SITE BY THE ENGINEER. SEE DWG.21854.0031-AHP5S3B&4-101 FOR RE SLOPE 7 PLAN.

LEGEND			
<u> </u>	BIDIM A19 GEOTEXTILE		
	TENSAR SS20 (SECONDARY)		
	TENSAR RE540 (PRIMARY)		
	HIGH STRENGTH STRUCTURAL FILL		
	SAP50 SCORIA		

1600 UPVC OUTLET DRAIN DISCHARGING ONTO THE ADJACENT SWALE AT APPROXIMATELY 50M INTERVAL. REFER TO

- EXISTING GROUND PROFILE

- DWG.21854.0031-AHP5S3A-102 FOR OUTLET LOCATIONS
- PALISADE WALL 5: INSTALLED AT 0.5m BELOW BASE OF RE SLOPE 7. 6m LONG PILES.
- 400Ø TIMBER SED PILES ENCASED IN 600Ø CONCRETED HOLES @ 1.5m CC SPACINGS.
- SUITABLE ALTERNATIVE, 250UC73 STEEL PILES ENCASED IN 450Ø CONCRETED HOLES @ 1.8m C/C SPACINGS, USE 20MPa CONCRETE STRENGTH

CLIENT WFH PROPERTIES LTD PROJECT MILLWATER - ARRANS HILL

TITLE PRECINCT 5 STAGE 3B & 4 RE SLOPE 7 - TYPICAL SECTION (SHEET 1)

SCALE (A3) 1:75

DWG No. 21854.0031-AHP5S3B&4-114 REV 1

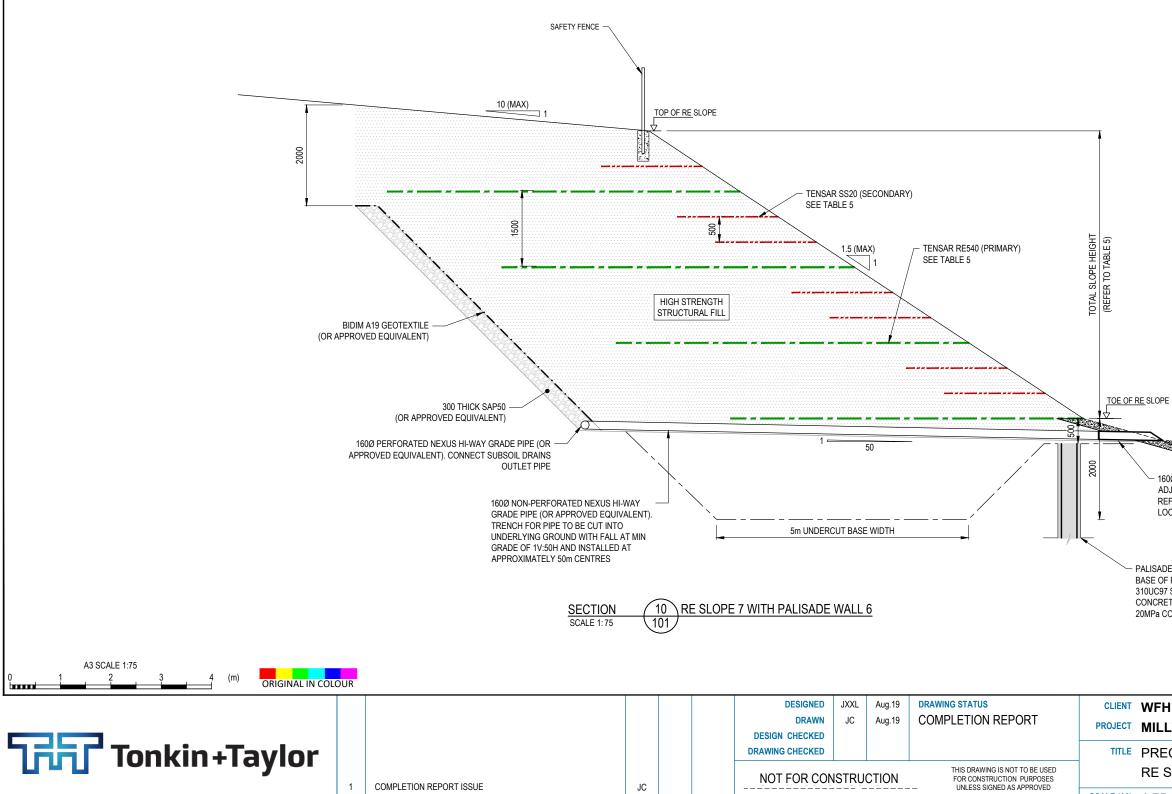

<u>.</u>	WALL OLI OUT AGT NOVIDL
3.	SEE DWG.21854.0031-AHP5

TABLE 5: REINFORCEMENT DETAIL FOR RE SL	OPF 7

WALL TYPE	MAXIMUM TOTAL		MAX BACK SLOPE	GEOGRID REQUIREMENTS		
	SLOPE HEIGHT (m)	MAX SLOPE		GEOGRID TYPE	GEOGRID LENGTH (m)	MAX VERTICAL SPACING (m)
		1V:1.5H	1V:10H	TENSAR RE540	4.0	1.5
	H ≤ 5			TENSAR SS20	2.0	0.5
RE SLOPES 7				TENSAR RE540	7.0	1.5
	5 < H ≤ 7	1V:1.5H	1V:10H	TENSAR SS20	2.0	0.5
		4) (4 5) 1	1V:10H	TENSAR RE540	11.0	1.5
	7 < H ≤ 9	1V:1.5H		TENSAR SS20	2.0	0.5
	9 <h≤11< td=""><td>1V:1.5H</td><td rowspan="2">1V:10H</td><td>TENSAR RE540</td><td>14.0</td><td>1.5</td></h≤11<>	1V:1.5H	1V:10H	TENSAR RE540	14.0	1.5
	3<11211	11.1.011		TENSAR SS20	2.0	0.5

COMPLETION REPORT ISSUE

REV DESCRIPTION

JC

CAD CHK

DATE

NOT FOR CONSTRUCTION

APPROVE

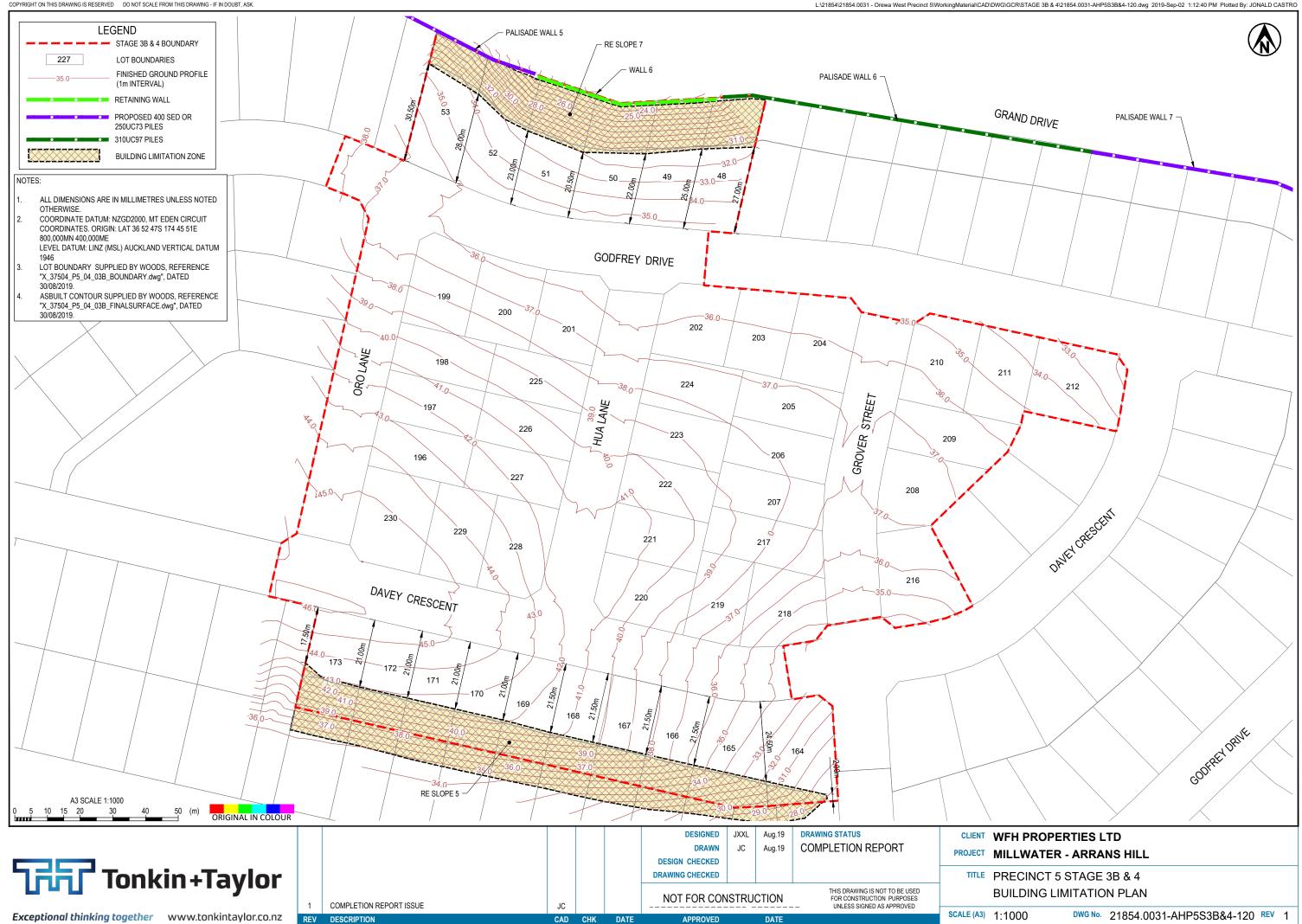
L:\21854\21854.0031 - Orewa West Precinct 5\WorkingMaterial(CAD\DWG\GCR\STAGE 3B & 4\21854.0031-AHP5S3B&4-113_115.dwg 2019-Sep-02 1:12:36 PM Plotted By: JONALD CASTRO

ALL DIMENSIONS ARE IN MILLIMETRES UNLESS NOTED OTHERWISE. WALL SETOUT AS PROVIDED BY WOODS AND CONFIRMED ON SITE BY THE ENGINEER. 5S3B&4-101 FOR RE SLOPE 7 PLAN.

LEGEND				
BIDIM A19 GEOTEXTILE				
	TENSAR SS20 (SECONDARY)			
	TENSAR RE540 (PRIMARY)			
	HIGH STRENGTH STRUCTURAL FILL			
	SAP50 SCORIA			

- EXISTING GROUND PROFILE

1600 UPVC OUTLET DRAIN DISCHARGING ONTO THE ADJACENT SWALE AT APPROXIMATELY 50m INTERVAL. REFER TO DWG.21854.0031-AHP5S3B&4-102 FOR OUTLET LOCATIONS


PALISADE WALL 6: INSTALLED AT 0.5m BELOW BASE OF RE SLOPE 7. APPROXIMATELY 8m LONG 310UC97 STEEL PILES, ENCASED IN 600Ø CONCRETE HOLES @ 2m C/C SPACINGS, USE 20MPa CONCRETE STRENGTH

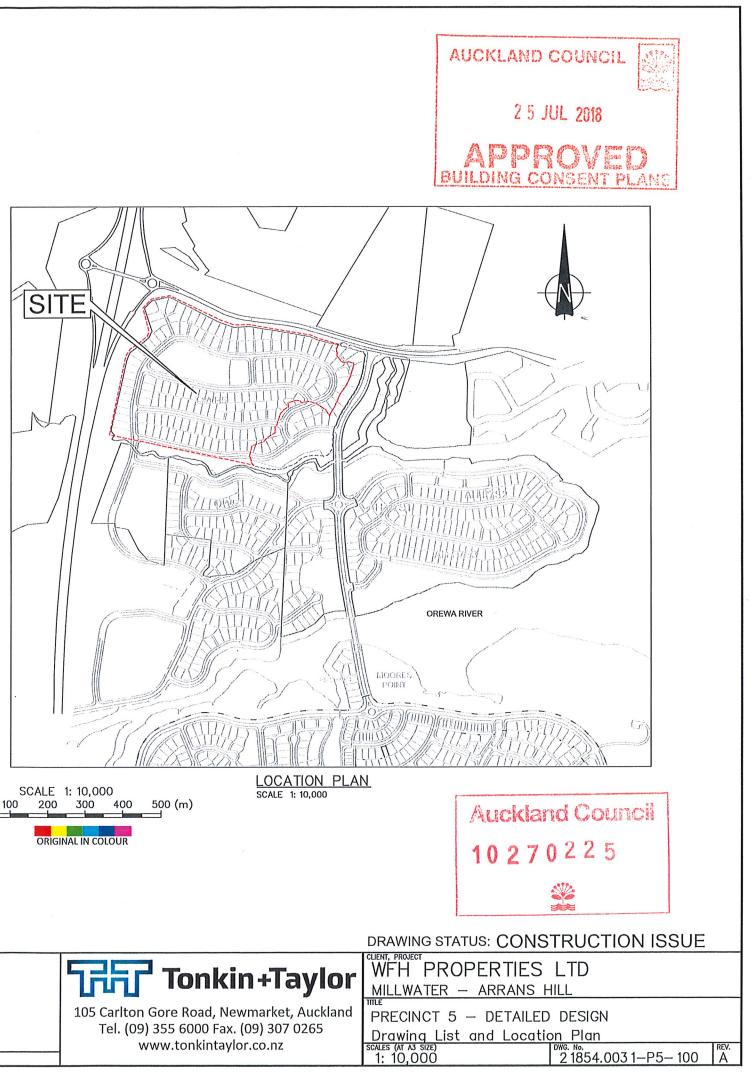
CLIENT WFH PROPERTIES LTD PROJECT MILLWATER - ARRANS HILL

TITLE PRECINCT 5 STAGE 3B & 4 RE SLOPE 7 - TYPICAL SECTION (SHEET2)

SCALE (A3) 1:75

DWG No. 21854.0031-AHP5S3B&4-115 REV 1

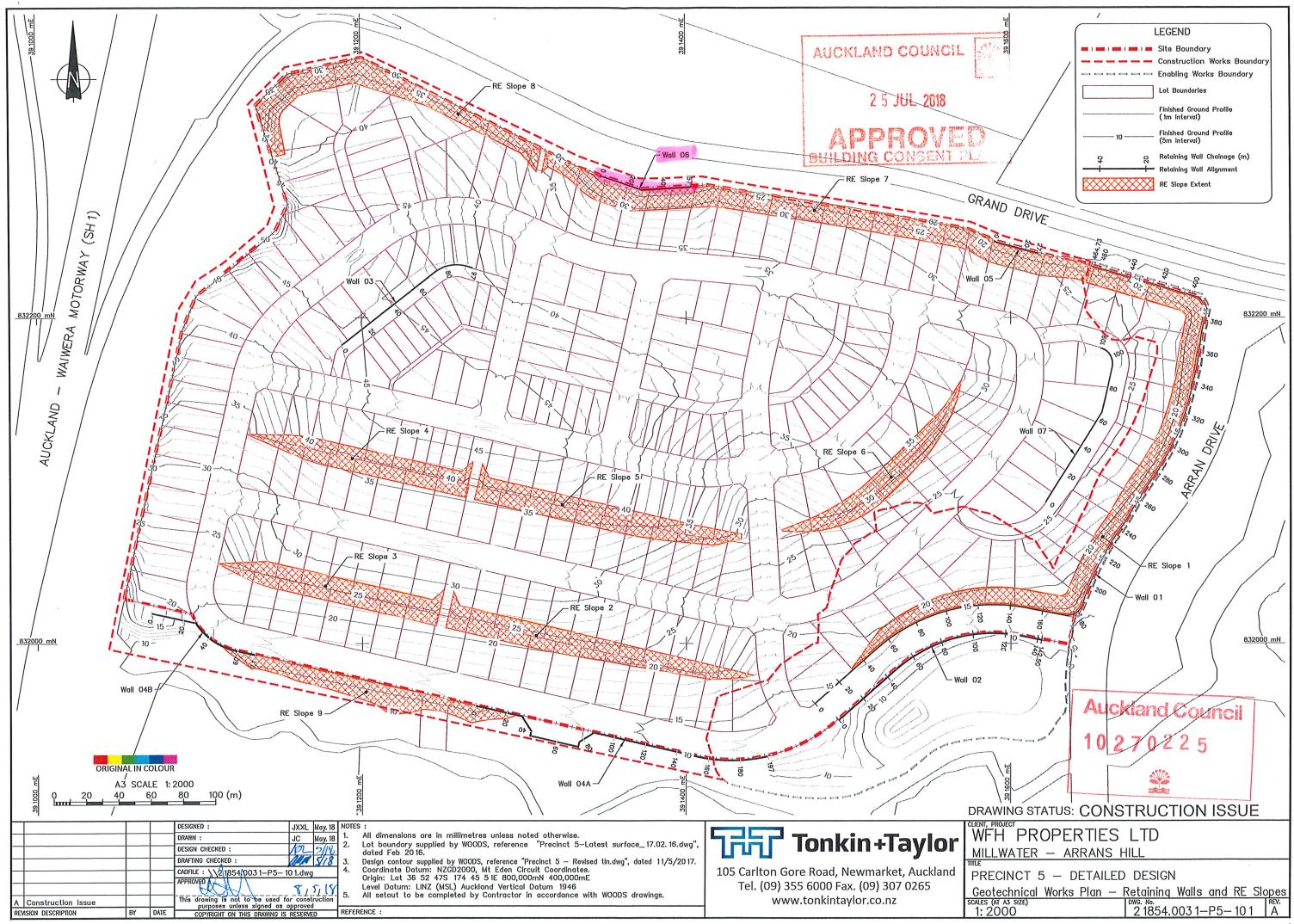
WFH PROPERTIES LTD **MILLWATER - ARRANS HILL PRECINCT 5 - DETAILED DESIGN**

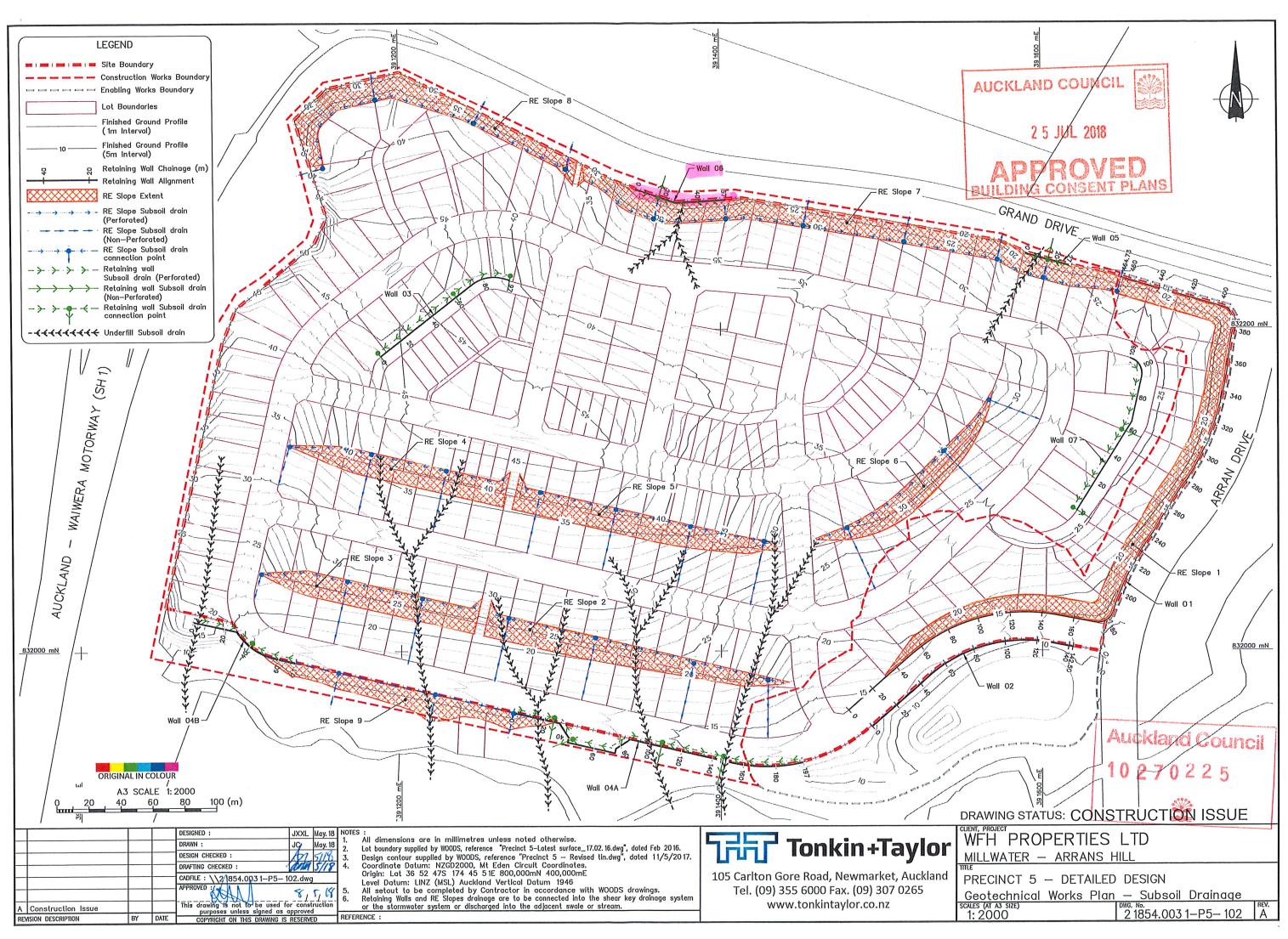

Construction Issue

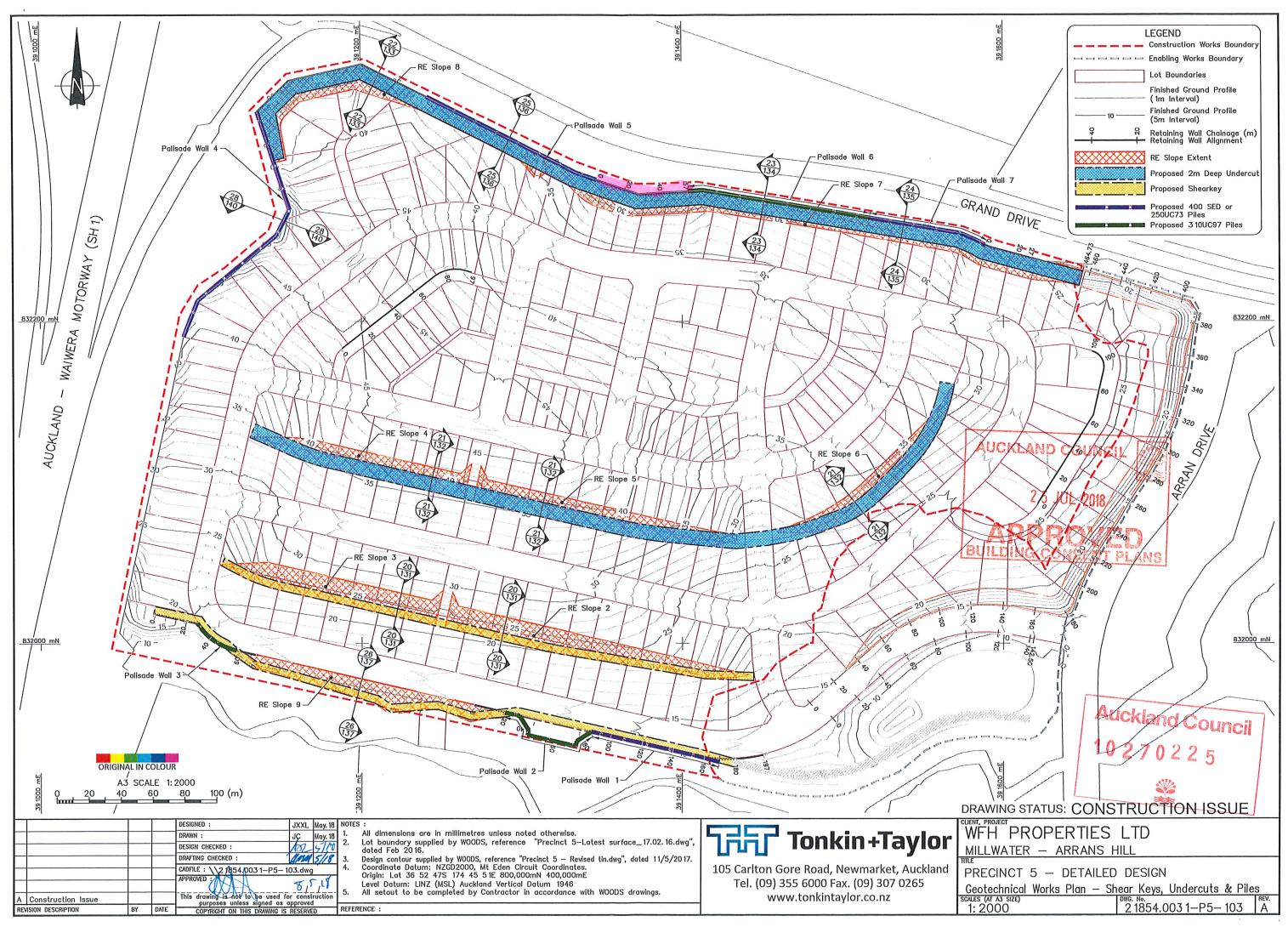
Rev Title

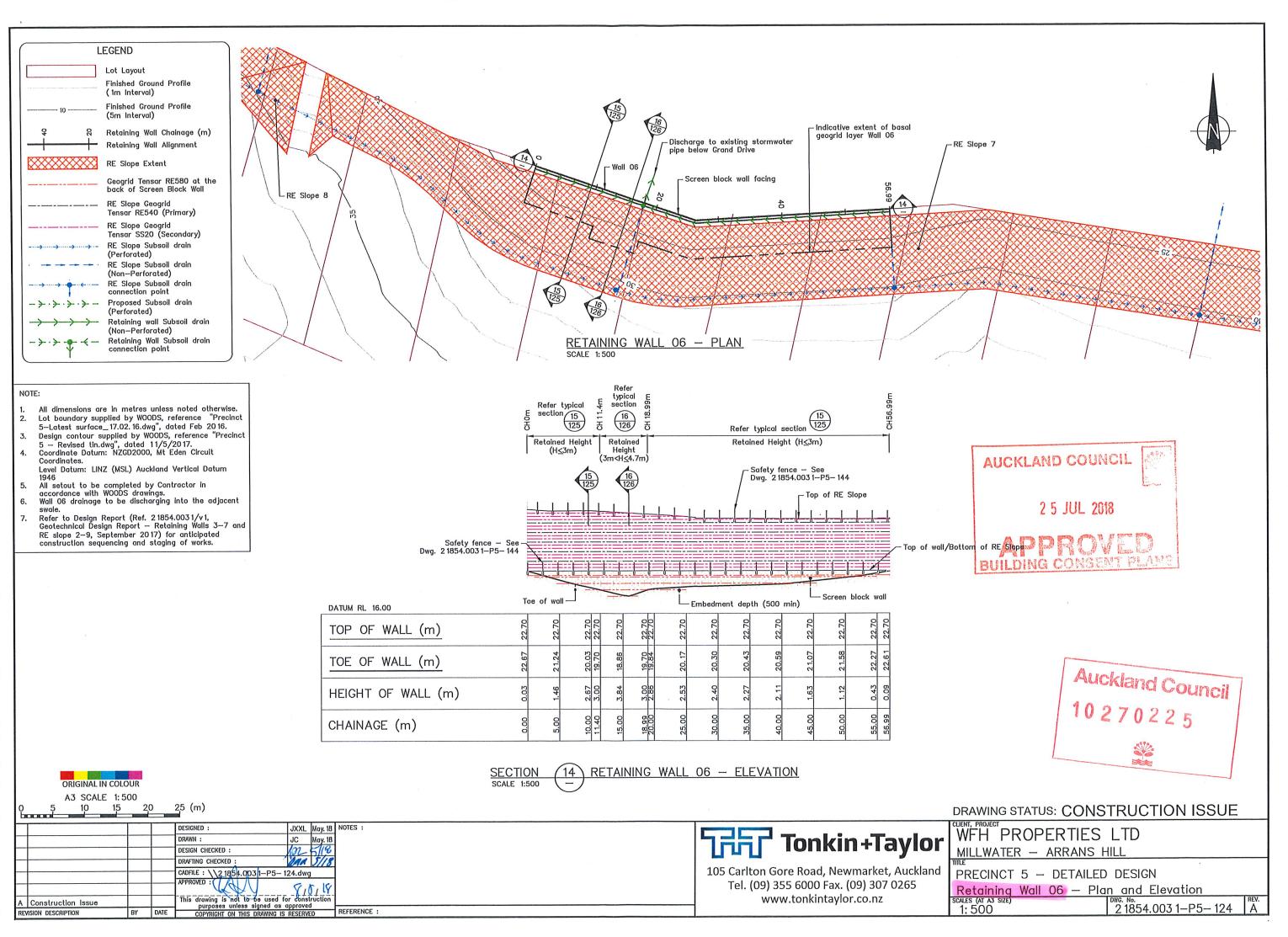
DRAWING

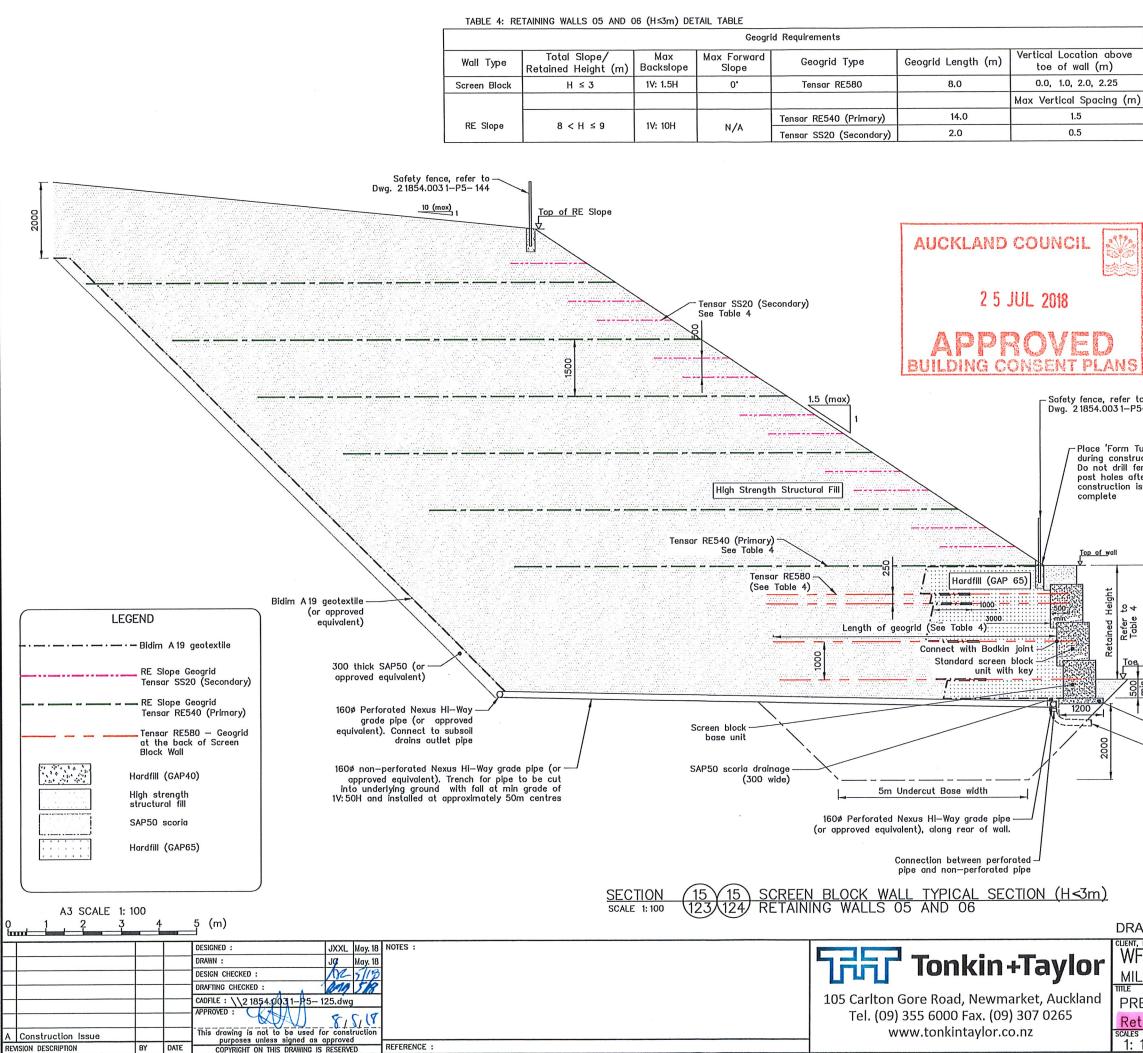
GENERAL • 21854.0031-P5-100 A Drawing List and Location Plan • 21854.0031-P5-101 A Geotechnical Works Plan - Retaining Walls and RE Slopes • 21854.0031-P5-102 A Geotechnical Works Plan - Subsoil Drainage • 21854.0031-P5-103 A Geotechnical Works Plan - Shear Keys, Undercuts & Piles • 21854.0031-P5-110 A Retaining Wall 03 - Plan, Elevation and Typical Section • 21854.0031-P5-111 A Retaining Wall 04A & 04B - Plan Retaining Wall 04A - Elevation (Sheet 1 of 2) • 21854.0031-P5-112 A • 21854.0031-P5-113 A Retaining Wall 04A - Elevation (Sheet 2 of 2) • 21854.0031-P5-114 A Retaining Wall 04B - Elevation Retaining Walls 04A and 04B - Typical Section (Hu 3m) • 21854.0031-P5-115 A Retaining Walls 04A and 04B - Typical Section (3m<Hu 5m) • 21854.0031-P5-116 A Retaining Wall 04A - Typical Section with Palisade Wall 1 (3m<Hµ 5m) 21854.0031-P5-117 A • 21854.0031-P5-118 A Retaining Wall 04B - Typical Section with Palisade Wall 3 (3m<Hu 5m) Retaining Wall 04A - Typical Section with Palisade wall 2 (3m<Hµ 5m) • 21854.0031-P5-119 A • 21854.0031-P5-120 A Retaining Wall 04B - Typical Section (5m<H<7m) • 21854.0031-P5-121 A Retaining Wall 04A - Typical Section with Palisade Wall 1 (5m<Hµ 7m) 21854.0031-P5-122 A Retaining Wall 04B - Typical Section with Palisade Wall 3 (5m<Hµ 7m) • 21854.0031-P5-123 A Retaining Wall 05 - Plan and Elevation Retaining Wall 06 - Plan and Elevation • 21854.0031-P5-124 A • 21854.0031-P5-125 A Retaining Walls 05 and 06 - Typical Section (Hu 3m) • 21854.0031-P5-126 A Retaining Walls 05 and 06 - Typical Section (3m<Hµ 4.2m) • 21854.0031-P5-127 A Retaining Wall 07 - Plan and Elevation • 21854.0031-P5-128 A Retaining Wall 07 - Typical Section 21854.0031-P5-131 A RE Slopes 2 and 3 - Typical Section • 21854.0031-P5-132 A RE Slopes 4, 5 and 6 - Typical Section • 21854.0031-P5-133 A RE Slopes 7 and 8 - Typical Section (Sheet 1 of 4) • 21854.0031-P5-134 A RE Slopes 7 and 8 - Typical Section (Sheet 2 of 4) • 21854.0031-P5-135 A RE Slopes 7 and 8 - Typical Section (Sheet 3 of 4) • 21854.0031-P5-136 A RE Slopes 7 and 8 - Typical Section (Sheet 4 of 4) RE Slope 9 - Typical Section • 21854.0031-P5-137 A • 21854.0031-P5-138 A RE Slopes Return - Plan • 21854.0031-P5-139 A RE Slopes 2 - 8 Return Typical Details Palisade Wall 4 Plan and Typical Details • 21854.0031-P5-140 A Retaining Wall Typical Geogrid Overlap Details • 21854.0031-P5-142 A • 21854.0031-P5-143 A Outlet Drain Detail

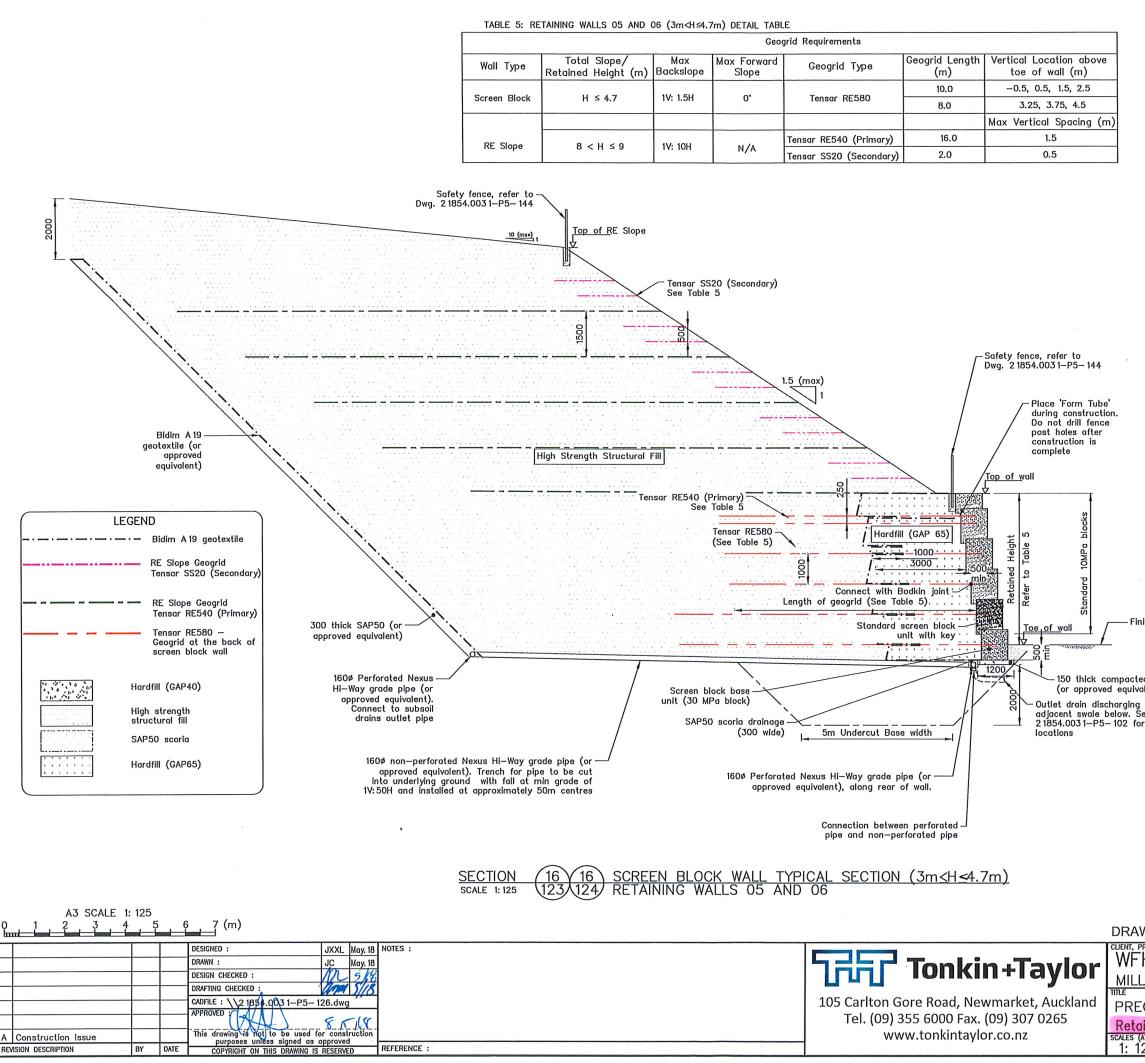

• 21854.0031-P5-144 A Safety Fence Detail

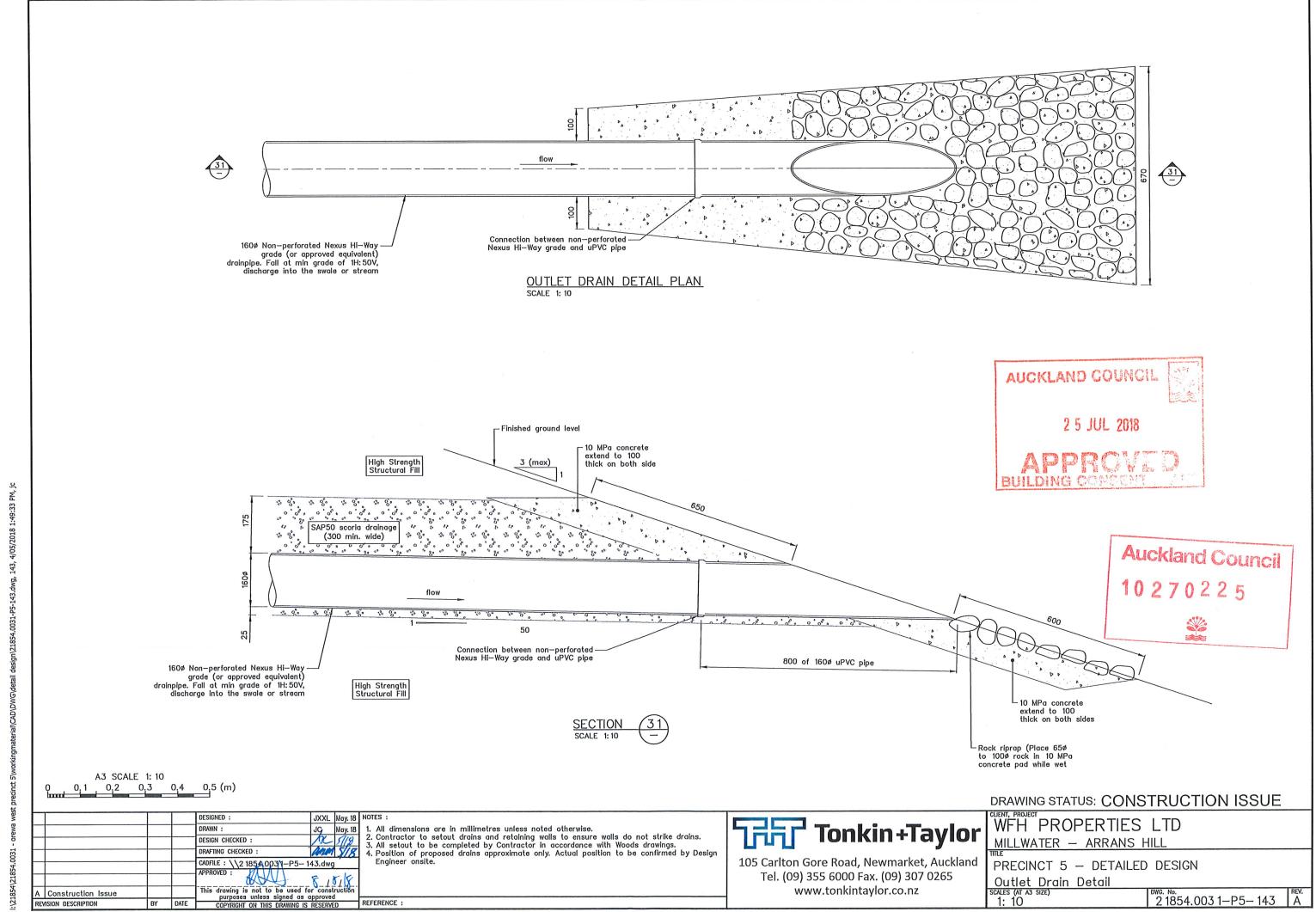



• Denotes drawing this issue: 4/05/2018


				DESIGNED : JXXL	May. 18	NOTES :		CLIEN
Γ				DRAWN: JC	May. 18		THAT Tonkin+Taylor	W
				DESIGN CHECKED :	5/18			M
				DRAFTING CHECKED :	5/18			Aug 1
				CADFILE : \\21854.0031-P5-100.dwg			105 Carlton Gore Road, Newmarket, Auckland	P
E				APPROVED : E 5	18		Tel. (09) 355 6000 Fax. (09) 307 0265	D
A	Construction Issue			This drawing is not to be used for constr purposes unless signed as approved			www.tonkintaylor.co.nz	SCAL
R	EVISION DESCRIPTION	BY	DATE	COPYRIGHT ON THIS DRAWING IS RESERVED		REFERENCE :		1:







	NOTES
- I	 All dimensions are in millimetres unless noted otherwise. All setout to be completed by Contractor in accordance with WOODS drawings
-	WOODS drawings. 3. See Dwg.2 1854.003 1–P5– 123 for Wall 05 plan and longsection. See Dwg.2 1854.003 1–P5– 124 for Wall 06 plan
_	and longsection.
	 Foundation to be inspected by Geotechnical engineer prior to placement of levelling pad. Excavated subgrade to be inspected by Geotechnical engineer
의	and tested to confirm minimum Su>120KPa, or otherwise
-	approved. 6. All fill shall be placed and compacted according to fill specification.
	specification. 7. The Contractor shall ensure that temporary excavated faces are stable
	are stable. 8. Excavation in front of the wall to be reinstated with High
	Strength Structural Fill, tested in accordance with the earthworks specification.
	 Clay cap placed to be tested to confirm minimum Su>80kPa, or otherwise approved. All (ii) shall be appread uping machanical plant such as an
_	 All fill shall be spread using mechanical plant such as an excavator bucket or a dozer with an opening bucket, which
]	causes the fill to cascade onto the grids. 11. All construction plant and other vehicles having a mass
	exceeding 1000kg shall not be used within 1.0m of the back face of the Screen Block. The plant used for compacting this
	zone shall be restricted to: a)Vibrating rollers having a total mass not exceeding 1000kg
	 b)Vibrating plate compactors having a total mass not exceeding 100kg
	c)Vibro tampers having a mass not exceeding 75kg
	12. Compaction testing of backfill around grids is required (refer to specification).
	13. Geogrids shall be laid horizontally (perpendicular to wall) on
	compacted layers of fill. They shall be tensioned to remove all slack prior to back filling and anchored by either placing a small volume of fill on or staking the free end. They shall
	remain tensioned whilst the balance of fill is placed. No traffic or site plant shall be permitted to travel on the grids
to	where cover is less than 100mm. 14. The Engineer shall inspect and approve installation of at least
95- 144	the first layer of geogrid and other layers as necessary. 15. Geogrid starters to be cast into Screen Block during
_	 Geogrid starters to be cast into Screen Block during manufacture and joined to geogrid using bodkin joints. Screen Block units used to construct RWO5 & RWO6 are to be
Tube' uction.	produced and supplied in accordance with manufacturer's
fence fter	specifications and recommendations. 17. Maximum 100mm overlap on adjoining grids. 18. Refer to Destan Report (Ref. 21854.0031/v1. Geotechnical
is	 Refer to Design Report (Ref. 21854.0031/v1, Geotechnical Design Report - Retaining Walls 3-7 and RE slope 2-9, Contraction of the state of the state
	September 2017) for anticipated construction sequencing and staging of works.
	oc ks
	Å OK
<u>:</u>	Finished ground level
e <u>ofw</u> oll	Finished ground level
•	<u> </u>
un n	1
100	thick compacted GAP40
	thick compacted GAP40 approved equivalent) levelling pad
	Dutlet drain discharging into the
2	adjacent swale below. Šee Dwg 2 1854.003 1 <u>P5</u> 102 for outlet
	ocations
	Auckland Council
	Auckland Council
	Auckland Council
	Auckland Council
	Auckland Council
A1477	Auckland Council 10270225
	Auckland Council
, PROJECT	Auckland Council 10270225
	Auckland Council 10270225
FH LLWA	Auckland Council 10270225 S STATUS: CONSTRUCTION ISSUE PROPERTIES LTD TER – ARRANS HILL
FH I LLWA	Auckland Council 10270225 S STATUS: CONSTRUCTION ISSUE PROPERTIES LTD TER – ARRANS HILL CT 5 – DETAILED DESIGN
FH I LLWA	Auckland Council 10270225 S STATUS: CONSTRUCTION ISSUE PROPERTIES LTD TER – ARRANS HILL CT 5 – DETAILED DESIGN g Walls 05 and 06 – Typical Section (H<3m)

_	
	NOTES 1. All dimensions are in millimetres unless noted otherwise. 2. All setout to be completed by Contractor in accordance with
	WOODS drawings. 3. See Dwg.21854.0031—P5—123 for Wall 05 plan and longsection. See Dwg.21854.0031—P5—124 for Wall 06 plan and longsection.
	 Foundation to be inspected 'by Geotechnical engineer prior to placement of levelling pad.
	 Excavated subgrade to be inspected by Geotechnical engineer and tested to confirm minimum Su>120KPa, or otherwise approved. All fill shall be placed and compacted according to fill specification.
	7. The Contractor shall ensure that temporary excavated faces are stable.
	 Excavation in front of the wall to be reinstated with High Strength Structural Fill, tested in accordance with the earthworks specification.
	 Clay cap placed to be tested to confirm minimum Su>80kPa, or otherwise approved.
	 All fill shall be spread using mechanical plant such as an excavator bucket or a dozer with an opening bucket, which causes the fill to cascade onto the grids. All construction plant and other vehicles having a mass exceeding
	1000kg shall not be used within 1.0m of the back face of the Screen Block. The plant used for compacting this zone shall be restricted to:
	a)Vibrating rollers having a total mass not exceeding 1000kg b)Vibrating plate compactors having a total mass not exceeding 100kg
	c)Vibro tampers having a mass not exceeding 75kg 12. Compaction testing of backfill around grids is required (refer to specification).
	13. Geogrids shall be laid horizontally (perpendicular to wall) on compacted layers of fill. They shall be tensioned to remove all slack prior to back filling and anchored by either placing a small volume of fill on or staking the free end. They shall remain
	tensioned whilst the balance of fill is placed. No traffic or site plant shall be permitted to travel on the grids where cover is
	less than 100mm. 14. The Engineer shall inspect and approve installation of at least the first layer of geogrid and other layers as necessary.
	 Geogrid starters to be cast into Screen Block during manufacture and joined to geogrid using bodkin joints.
	 Screen Block units used to construct RW05 & RW06 are to be produced and supplied in accordance with manufacturer's
	specifications and recommendations. 17. Maximum 100mm overlap on adjoining grids.
	 Refer to Design Report (Ref. 21854.0031/v1, Geotechnical Design Report - Retaining Walls 3-7 and RE slope 2-9, September
	2017) for anticipated construction sequencing and staging of works.
	AUCKLAND COUNCIL
	AUGUL
s	hed ground level
	hed ground level 2 5 JUL 2018
d	GAP40 nt) levelling pod
le	nt) levelling part
20	Dwg outlet
	Auckland Council
	10 and 90011CII
	10270225
N	ING STATUS: CONSTRUCTION ISSUE
20	JECT
	I PROPERTIES LTD
٧.	VATER – ARRANS HILL

PRECINCT 5 - DETAILED DESIGNRetaining Walls05 and06 - Typical Section (3m<H<4.2m)</th>SCALES (AT AS SIZE)DWG. No.REV.1: 1252 1854.003 1-P5- 126A

2400 50x50 square galvanised tube, powder coated, min. 5 thick – 50x50 square galvanised tube, powder coated, min. 5 thick FENCE DETAIL PLAN SCALE 1:20 - 50x50 square galvanised tube, powder coated, min. 5 thick 75 2400 100 320 250 Ground level SECTION SCALE 1:20 6ø powder coated galvanised steel, in accordance with AS3715-2002 450 . Ц. - 225ø, 17.5 MPa concrete footing 225 ELEVATION SCALE 1:20 A3 SCALE 1:20 . 0,2 0,4 0,6 0,8 1.0 (m) DR/ CLIENT DESIGNED : JXXL May. 18 NOTES : **The Tonkin**+Taylor All dimensions are in millimetres unless noted otherwise.
 Fence panels to be hot dip galvanised and black powder coated.
 Fence panels must not have more than 100mm gap from ground level to base of installed panels. JC LR-DRAWN : May. 18 MII **DESIGN CHECKED :** DRAFTING CHECKED : A. Post to be 50mmø hot dip galvanised pipe and black poweder coated.
5. Posts to be installed vertically and packed out appropriately.
6. Fence panels and post to be installed in accordance with manufacturers recommendation and specification. 105 Carlton Gore Road, Newmarket, Auckland CADFILE : 121854.0031-P5-110.dwg

Construction Issue

REVISION DESCRIPTION

APPROVED :

BY DATE

This drawing is not to be used for cons

purposes unless signed as approved COPYRIGHT ON THIS DRAWING IS RESERVED

SULL

REFERENCE :

Tel. (09) 355 6000 Fax. (09) 307 0265

www.tonkintaylor.co.nz

-Place "Form Tube" during construction of retaining walls. Do not drill fence post holes after construction of wall is complete. Fence post holes may be drilled at top of Reinforced Earth Slope

DRAWING STATUS: CONS	TRUCTION ISSUE	
WFH PROPERTIES	LTD	
MILLWATER - ARRANS H	HLL	
me PRECINCT 5 – DETAILED	DESIGN	
Safety Fence Detail		
scales (at as size) 1:75	^{DWG. №.} 2 1854.003 1–P5– 144	REV.
1.70		11

Appendix B: Contractors Certificates

- Hick Bros Civil Construction Ltd Producer Statement 3 Precinct 5 Stage 3B Bulk Earthworks Contract
- Hick Bros Civil Construction Ltd Producer Statement 3 Precinct 5 Stage 4 Bulk Earthworks Contract
- JG Civil Ltd Sixth Schedule Precinct 5 Stages 3B and 4 Civils Contract
- ICB Retaining and Construction Ltd Producer Statement 3 (Palisade Wall 5 Construction)
- ICB Retaining and Construction Ltd Producer Statement 3 (Screen Block Retaining Wall 6 Construction)
- North Harbour Fencing Ltd Producer Statement 3 (RE Slope 7 and Retaining Wall 6 Fence)

PS3 - FORM OF PRODUCER STATEMENT- CONSTRUCTION

ISSUED BY: HICK BROS CIVIL CONSTRUCTION LIMITED

TO: WFH Development Ltd

IN RESPECT OF: Precinct 5 Stage 3B Earthworks **AT**: 157 Grand Drive, Orewa

HICK BROS CIVIL CONSTRUCTION LTD has contracted to WFH Development Ltd to carry out and complete certain building works in accordance with a contract, titled Precinct 5 Stage 3B Earthworks ("the contract")

I JAMES BILKEY a duly authorized representative of HICK BROS CIVIL CONSTRUCTION LIMITED believe on reasonable grounds that HICK BROS CIVIL CONSTRUCTION LIMITED has carried out and completed all of the contract works in in accordance with the contract.

Date: 29th August 2019

(Signature of Authorized Agent on behalf of)

HICK BROS CIVIL CONSTRUCTION LIMITED (Contractor)

42 FORGE ROAD, SILVERDALE (Address)

PS3 - FORM OF PRODUCER STATEMENT- CONSTRUCTION

ISSUED BY: HICK BROS CIVIL CONSTRUCTION LIMITED

TO: WFH Development Ltd

IN RESPECT OF: Precinct 5 Stage 4 Earthworks **AT**: 157 Grand Drive, Orewa

HICK BROS CIVIL CONSTRUCTION LTD has contracted to WFH Development Ltd to carry out and complete certain building works in accordance with a contract, titled Precinct 5 Stage 4 Earthworks ("the contract")

I JAMES BILKEY a duly authorized representative of HICK BROS CIVIL CONSTRUCTION LIMITED believe on reasonable grounds that HICK BROS CIVIL CONSTRUCTION LIMITED has carried out and completed all of the contract works in in accordance with the contract.

Date: 29th August 2019

(Signature of Authorized Agent on behalf of)

HICK BROS CIVIL CONSTRUCTION LIMITED (Contractor)

42 FORGE ROAD, SILVERDALE (Address)

Schedule 6 – Form of Producer Statement – Construction

ISSUED BY	JG Civil Ltd	(Contractor)
то	WFH PROPERTIES Ltd	(Principal)
IN RESPECT OF	Millwater Precinct 5 - Stage 3b & 4	(Description of Contract Works)
AT		
	Arran Hill - Millwater	(Address)

JG Civil Ltd (*Contractor*) has contracted to *WFH PROPERTIES Ltd* (*Principal*) to carry out and complete certain building works in accordance with a Contract titled *PRECINCT 5 - STAGE 3b & 4* ('the Contract')

I Joel Giddy (Duly Authorised Agent) a duly authorised representative of JG Civil Ltd (Contractor) believe on reasonable grounds that JG Civil Ltd (Contractor) has carried out and completed:

⊠ All

Part only as specified in the attached particulars of the contract works in accordance with the Contract

(Signature of Authorised Agent on behalf of)

Date 29 August 2019

JG Civil Ltd

(Contractor)

180 Foundry Road, Silverdale

(Address)

SIXTH SCHEDULE

(NZS 3910:2003)

FORM OF PRODUCER STATEMENT CONSTRUCTION

ISSUED BY	ICB Retaining & Construction Limited	
	(Contractor)	
то	Hicks Bros Civil Contractors Ltd	
	(Principal)	
IN RESPECT OF	Palisade Wall no.5	
	(Description of Contract Works)	
AT	Millwater Subdivision, Arran Hill, Precinct Orewa West	t 5,
	(Address)	
	ICB Retaining & Construction Ltd	
	(Contractor)	
has contracted to	Hicks Bros Civil Contractors Ltd	
	(Principal)	
to carry out and complete certain but	ilding works in accordance with a contract, titled	d
Palisade W	all no.5 (The Contract))
(The Proj	ect)	
I, Chris	Burke a duly authorise	ed
(Duly Authoris	ed Agent)	
representative of IC	B Retaining & Construction Limited	
•	(Contractor)	
Believe on reasonable grounds that	ICB Retaining & Construction Limited	I
	(Contractor)	
has carried out and completed:		
☑ All □ Part only as specified in	n the attached particulars of the building work ent No. and any Authorised Instruction / Variat urse of the work. (Signature of Authorised Agent on Behalf of	tions
	16 September 2019	
	(Date)	
	ICB Retaining & Construction Limited	
	(Contractor)	
	13 Volkner Place, Rosedale, Auckland 06	532
	(Address)	

SIXTH SCHEDULE

(NZS 3910:2003)

FORM OF PRODUCER STATEMENT CONSTRUCTION

ISSUED BY	ICB Retainir	ng & Construction Limited
		(Contractor)
то	Hicks Bro	os Civil Contractors Ltd (Principal)
IN RESPECT OF	Da	lisade Wall no.6
		tion of Contract Works)
AT		ivision, Arran Hill, Precinct 5, Orewa West
	·····	(Address)
	ICB Retai	ning & Construction Ltd
		(Contractor)
has contracted to	Hicks Bro	os Civil Contractors Ltd (Principal)
to carry out and complete certain	n building works in acc	
	5	
	e Wall no.6 Project)	(The Contract)
	orised Agent)	a duly authorised
representative of	ICB Retaining & Co	nstruction Limited
	(00)	
Believe on reasonable grounds the	nat ICB Retain	ing & Construction Limited
		(Contractor)
	onsent No. and any A e course of the work.	rticulars of the building works in uthorised Instruction / Variations Authorised Agent on Behalf of)
	1	6 October 2018
	**********************	(Date)
	ICB Retain	ing & Construction Limited (Contractor)
	13 Volkner Pla	ace, Rosedale, Auckland 0632 (Address)

SIXTH SCHEDULE

(NZS 3910:2003)

FORM OF PRODUCER STATEMENT CONSTRUCTION

ISSUED BY	ICB Retaining	8 Construction Limited
		(Contractor)
то	Hick Bro	thers Construction.
		(Principal)
IN RESPECT OF		III No. 6, Precent 5, Orewa Ind, Lot 805 DP463561
	(Description	on of Contract Works)
AT	157 Grand D	Drive, Orewa, Auckland
		(Address)
	ICB Retaini	ng & Construction Ltd
		(Contractor)
has contracted to	Hick Bro	thers Construction
		(Principal)
to carry out and complete certain bu	uilding works in accor	dance with a contract, titled
Supply and Installation of Ma Orewa West (Arran Hill) – for V		
(The Dre	ic ct)	(The Contract)
(The Pro	Ject)	
/	Burke	a duly authorised
(Duly Authoris	sed Agent)	
representative of IC	B Retaining & Cons	struction Limited
	(Contr	actor)
Believe on reasonable grounds that	ICB Retainin	g & Construction Limited
		(Contractor)
has carried out and completed:		
☑ All □ Part only as specified i accordance with the Building Cons Instruction / Variations that have be	ent No. REG66652,	REG66703 and any Authorised
	hus	Dula
	(Signature of Au	ithorised Agent on Behalf of)
	(9 April 2018
		(Date)
	ICB Co	nstruction Limited
		(Contractor)
	PO Box 303 340), North Harbour, Auckland
		(Address)

FORM OF PRODUCER STATEMENT PS3 – CONSTRUCTION

At project completion, this form shall be completed by the building contractor and supplied to the Engineer. ISSUED BY: NOR HA FOUCING (Building Contractor) G TO: (Owner/Principal) IN RESPECT OF: (Description of Contract Works) 37504-1 AT:以 6 RECENT (Address) T/A:... LCMLAND COMC - BUILDING CONSENT NO (Territorial Authority / Building Consent Authority) The above Building Contractor has contracted to the above Owner/Principal to carry out and complete certain building works in accordance with the contract, titled WATER ("the contract") (Title of building contract) Be a duly authorised representative of the L. C (Builders Authorised Agent) above building contractor, believe on reasonable grounds that the above building contractor has carried out and completed Part only as specified in the attached particulars of the building works in accordance with the contract. (Signature of Authorised Agent on behalf of the Building Contractor)

(Date) 20 A MANGA (D) SILVERSALE

(Address)

This producer statement is confirmation by the builder(s) that they have carried out the building work in accordance with the drawings, specifications (and site amendments) that are part of the contract / building consent documents.

Work covered by this statement should have been supervised and checked by suitably qualifled tradespersons.

The Engineer requires this producer statement and a copy of the T/A's building consent conditions, to confirm that items of the contract that he has not personally examined, have in fact been built according to the documents, so that the Engineer may issue appropriate documents to the T/A for it to release the Code Compliance Certificate.

20393-1

NZS 3604:2011 Expansive Soils (Extract)

Expansive soils tend to be moderately to highly plastic clays that undergo appreciable volume change upon changes in moisture content. Technically, they are defined in NZS 3604:2011 as those soils having a liquid limit of more than 50% and a linear shrinkage of more than 15%. Where soils are quite silty or sandy, shrink and swell is less of a problem, due to the lower clay contents.

Building damage resulting from expansive soil movement can range from relatively minor brick veneer cracking and internal cracking on wall corners and wall ceiling corners with attendant door and windows jamming, through to extensive cracking of foundation block framework, extensive internal visual cracking and significant warping of building frames. Damage is dependent on building construction and materials and is rarely of structural concern.

NZS 3604:2011 "Timber Framed Buildings" defines good ground as follows:

"Any soil or rock capable of permanently withstanding an ultimate bearing capacity of 300kPa (i.e. an allowable bearing pressure of 100kPa using a factor of safety of 3.0), but excludes:

- a) Potentially compressible ground such as topsoil, soft soils such as clay which can be moulded easily in the fingers, and uncompacted loose gravel which contains obvious voids;
- b) Expansive soils being those that have a liquid limit of more than 50% when tested in accordance with NZS 4402 Test 2.2, and a linear shrinkage of more than 15% when tested in accordance with NZS 4402 Test 2.6, and
- c) Any ground which could forseeably experience movement of 25mm or greater for any reason including one or a combination of: land instability, ground creep, subsidence, seasonal swelling and shrinking, frost heave, changing ground water level, erosion, dissolution of soil in water, and effects of tree roots."

Foundations on expansive soils are outside the scope of NZS 3604:2011 as an acceptable solution to the New Zealand Building Code (NZBC). Specific engineering design of foundation elements is involved where expansive soils are present with a recommendation that AS 2870:2011 is used for building design. While not mandatory, AS 2870 designs will allow for a non-specific design foundation to be used without resorting to further ongoing investigation or design.

This geotechnical completion report has classified the soils present on this subdivision to be in Site Class M to H2 as per the requirements of AS 2870:2011. Descriptions of the various site classes, together with characteristic surface ground movements are outlined below.

Allowing for some correlation with NZS 3604, the various site classes applicable to NZ conditions are considered to be:

Characteristic Surface Movements	Site Class	Description
a) 20 mm (Note NZS 3604:2011 assumes movement of 25 mm as part of underlying design.	Class A (sand) and/or Class S (Silts) Equivalent to NZS 3604:2011 "Good Ground" sites	Poor to slightly expansive
 b) 20 mm - 40 mm c) 40 mm - 60 mm d) 60 mm - 75mm e) > 75 mm 	Class M Class H1 Class H2 Class E	Moderately expansive Highly expansive Highly expansive Extremely expansive

AS 2870 uses a range of factors to assess characteristic soil movement including:

- i. Building distress due to ground movement visible on adjacent structures,
- ii. Known soil properties and site specific testing to determine the shrink / swell index of a soil (Test 7.1.1 in AS 1289 Methods of Testing Soils for Engineering Purposes).

AS 2870 is based on defining soil types into various hazard classes based on expected surface movement and depth of desiccation that could occur. It then applies various foundation designs and embedment depths based on the form of building construction (slab on ground, strip footing, stiffened raft, stiffened slab with deep edge beams, etc). AS2870 uses more reinforcing steel than NZ designs generally would to create stiffer foundations that are better able to tolerate ground movement.

The Australian approach also regards expansive soil to a considerable extent being a home owner maintenance issue and significant emphasis is put into ensuring that people understand the influence that trees and dry summers etc may have on foundation performance. See Appendix D.

Appendix D:	CSIRO – BTF18 – Foundation
	Maintenance and Footing
	Performance: A Homeowners Guide

Foundation Maintenance and Footing Performance: A Homeowner's Guide

BTF 18 replaces Information Sheet 10/91

Buildings can and often do move. This movement can be up, down, lateral or rotational. The fundamental cause of movement in buildings can usually be related to one or more problems in the foundation soil. It is important for the homeowner to identify the soil type in order to ascertain the measures that should be put in place in order to ensure that problems in the foundation soil can be prevented, thus protecting against building movement.

This Building Technology File is designed to identify causes of soil-related building movement, and to suggest methods of prevention of resultant cracking in buildings.

Soil Types

The types of soils usually present under the topsoil in land zoned for residential buildings can be split into two approximate groups – granular and clay. Quite often, foundation soil is a mixture of both types. The general problems associated with soils having granular content are usually caused by erosion. Clay soils are subject to saturation and swell/shrink problems.

Classifications for a given area can generally be obtained by application to the local authority, but these are sometimes unreliable and if there is doubt, a geotechnical report should be commissioned. As most buildings suffering movement problems are founded on clay soils, there is an emphasis on classification of soils according to the amount of swell and shrinkage they experience with variations of water content. The table below is Table 2.1 from AS 2870, the Residential Slab and Footing Code.

Causes of Movement

Settlement due to construction

;

There are two types of settlement that occur as a result of construction:

- Immediate settlement occurs when a building is first placed on its foundation soil, as a result of compaction of the soil under the weight of the structure. The cohesive quality of clay soil mitigates against this, but granular (particularly sandy) soil is susceptible.
- Consolidation settlement is a feature of clay soil and may take place because of the expulsion of moisture from the soil or because of the soil's lack of resistance to local compressive or shear stresses. This will usually take place during the first few months after construction, but has been known to take many years in exceptional cases.

These problems are the province of the builder and should be taken into consideration as part of the preparation of the site for construction. Building Technology File 19 (BTF 19) deals with these problems.

Erosion

All soils are prone to erosion, but sandy soil is particularly susceptible to being washed away. Even clay with a sand component of say 10% or more can suffer from erosion.

Saturation

This is particularly a problem in clay soils. Saturation creates a boglike suspension of the soil that causes it to lose virtually all of its bearing capacity. To a lesser degree, sand is affected by saturation because saturated sand may undergo a reduction in volume – particularly imported sand fill for bedding and blinding layers. However, this usually occurs as immediate settlement and should normally be the province of the builder.

Seasonal swelling and shrinkage of soil

All clays react to the presence of water by slowly absorbing it, making the soil increase in volume (see table below). The degree of increase varies considerably between different clays, as does the degree of decrease during the subsequent drying out caused by fair weather periods. Because of the low absorption and expulsion rate, this phenomenon will not usually be noticeable unless there are prolonged rainy or dry periods, usually of weeks or months, depending on the land and soil characteristics.

The swelling of soil creates an upward force on the footings of the building, and shrinkage creates subsidence that takes away the support needed by the footing to retain equilibrium.

Shear failure

This phenomenon occurs when the foundation soil does not have sufficient strength to support the weight of the footing. There are two major post-construction causes:

- Significant load increase.
- Reduction of lateral support of the soil under the footing due to erosion or excavation.
- In clay soil, shear failure can be caused by saturation of the soil adjacent to or under the footing.

	GENERAL DEFINITIONS OF SITE CLASSES
Class	Foundation
A	Most sand and rock sites with little or no ground movement from moisture changes
S	Slightly reactive clay sites with only slight ground movement from moisture changes
М	Moderately reactive clay or silt sites, which can experience moderate ground movement from moisture changes
Н	Highly reactive clay sites, which can experience high ground movement from moisture changes
E	Extremely reactive sites, which can experience extreme ground movement from moisture changes
A to P	Filled sites
Р	Sites which include soft soils, such as soft clay or silt or loose sands; landslip; mine subsidence; collapsing soils; soils subject to erosion; reactive sites subject to abnormal moisture conditions or sites which cannot be classified otherwise

Tree root growth

Trees and shrubs that are allowed to grow in the vicinity of footings care cause foundation soil movement in two ways:

- Roots that grow under footings may increase in cross-sectional size, exerting upward pressure on footings.
- Roots in the vicinity of footings will absorb much of the moisture in the foundation soil, causing shrinkage or subsidence.

Unevenness of Movement

The types of ground movement described above usually occur unevenly throughout the building's foundation soil. Settlement due to construction tends to be uneven because of:

- Differing compaction of foundation soil prior to construction.
- Differing moisture content of foundation soil prior to construction.

Movement due to non-construction causes is usually more uneven still. Erosion can undermine a footing that traverses the flow or can create the conditions for shear failure by eroding soil adjacent to a foo ting that runs in the same direction as the flow.

Saturation of clay foundation soil may occur where subfloor walls create a dam that makes water pond. It can also occur wherever there is a source of water near footings in clay soil. This leads to a severe reduction in the strength of the soil which may create local shear failure.

Seasonal swelling and shrinkage of clay soil affects the perimeter of the building first, then gradually spreads to the interior. The swelling process will usually begin at the uphill extreme of the building, or on the weather side where the land is flat. Swelling gradually reaches the interior soil as absorption continues. Shrinkage usually begins where the sun's heat is greatest.

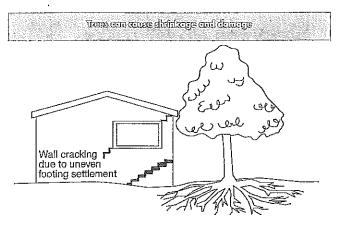
Effects of Uneven Soil Movement on Structures

Erosion and saturation

ĸ

Erosion removes the support from under footings, tending to create subsidence of the part of the structure under which it occurs. Brickwork walls will resist the stress created by this removal of support by bridging the gap or cantilevering until the bricks or the mortar bedding fail. Older masonry has little resistance. Evidence of failure varies according to circumstances and symptoms may include:

- Step cracking in the mortar beds in the body of the wall or above/below openings such as doors or windows.
- Vertical cracking in the bricks (usually but not necessarily in line with the vertical beds or perpends).


Isolated piers affected by erosion or saturation of foundations will eventually lose contact with the bearers they support and may tilt or fall over. The floors that have lost this support will become bouncy, sometimes rattling ornaments etc.

Seasonal swelling/shrinkage in clay

Swelling foundation soil due to rainy periods first lifts the most exposed extremities of the footing system, then the remainder of the perimeter footings while gradually permeating inside the building footprint to lift internal footings. This swelling first tends to create a dish effect, because the external footings are pushed higher than the internal ones.

The first noticeable symptom may be that the floor appears slightly dished. This is often accompanied by some doors binding on the floor or the door head, together with some cracking of cornice mitres. In buildings with timber flooring supported by bearers and joists, the floor can be bouncy. Externally there may be visible dishing of the hip or ridge lines.

As the moisture absorption process completes its journey to the innermost areas of the building, the internal footings will rise. If the spread of moisture is roughly even, it may be that the symptoms will temporarily disappear, but it is more likely that swelling will be uneven, creating a difference rather than a disappearance in symptoms. In buildings with timber flooring supported by bearers and joists, the isolated piers will rise more easily than the strip footings or piers under walls, creating noticeable doming of flooring.

As the weather pattern changes and the soil begins to dry out, the external footings will be first affected, beginning with the locations where the sun's effect is strongest. This has the effect of lowering the external footings. The doming is accentuated and cracking reduces or disappears where it occurred because of dishing, but other cracks open up. The roof lines may become convex.

Doming and dishing are also affected by weather in other ways. In areas where warm, wet summers and cooler dry winters prevail, water migration tends to be toward the interior and doming will be accentuated, whereas where summers are dry and winters are cold and wet, migration tends to be toward the exterior and the underlying propensity is toward dishing.

Movement caused by tree roots

In general, growing roots will exert an upward pressure on footings, whereas soil subject to drying because of tree or shrub roots will tend to remove support from under footings by inducing shrinkage.

Complications caused by the structure itself

Most forces that the soil causes to be exerted on structures are vertical – i.e. either up or down. However, because these forces are seldom spread evenly around the footings, and because the building resists uneven movement because of its rigidity, forces are exerted from one part of the building to another. The net result of all these forces is usually rotational. This resultant force often complicates the diagnosis because the visible symptoms do not simply reflect the original cause. A common symptom is binding of doors on the vertical member of the frame.

Effects on full masonry structures

Brickwork will resist cracking where it can. It will attempt to span areas that lose support because of subsided foundations or raised points. It is therefore usual to see cracking at weak points, such as openings for windows or doors.

In the event of construction settlement, cracking will usually remain unchanged after the process of settlement has ceased.

With local shear or erosion, cracking will usually continue to develop until the original cause has been remedied, or until the subsidence has completely neutralised the affected portion of footing and the structure has stabilised on other footings that remain effective.

In the case of swell/shrink effects, the brickwork will in some cases return to its original position after completion of a cycle, however it is more likely that the rotational effect will not be exactly reversed, and it is also usual that brickwork will settle in its new position and will resist the forces trying to return it to its original position. This means that in a case where swelling takes place after construction and cracking occurs, the cracking is likely to at least partly remain after the shrink segment of the cycle is complete. Thus, each time the cycle is repeated, the likelihood is that the cracking will become wider until the sections of brickwork become virtually independent.

With repeated cycles, once the cracking is established, if there is no other complication, it is normal for the incidence of cracking to stabilise, as the building has the articulation it needs to cope with the problem. This is by no means always the case, however, and monitoring of cracks in walls and floors should always be treated seriously.

Upheaval caused by growth of tree roots under footings is not a simple vertical shear stress. There is a tendency for the root to also exert lateral forces that attempt to separate sections of brickwork after initial cracking has occurred.

The normal structural arrangement is that the inner leaf of brickwork in the external walls and at least some of the internal walls (depending on the roof type) comprise the load-bearing structure on which any upper floors, ceilings and the roof are supported. In these cases, it is internally visible cracking that should be the main focus of attention, however there are a few examples of dwellings whose external leaf of masonry plays some supporting role, so this should be checked if there is any doubt. In any case, externally visible cracking is important as a guide to stresses on the structure generally, and it should also be remembered that the external walls must be capable of supporting themselves.

Effects on framed structures

Timber or steel framed buildings are less likely to exhibit cracking due to swell/shrink than masonry buildings because of their flexibility. Also, the doming/dishing effects tend to be lower because of the lighter weight of walls. The main risks to framed buildings are encountered because of the isolated pier footings used under walls. Where erosion or saturation cause a footing to fall away, this can double the span which a wall must bridge. This additional stress can create cracking in wall linings, particularly where there is a weak point in the structure caused by a door or window opening. It is, however, unlikely that framed structures will be so stressed as to suffer serious damage without first exhibiting some or all of the above symptoms for a considerable period. The same warning period should apply in the case of upheaval. It should be noted, however, that where framed buildings are supported by strip footings there is only one leaf of brickwork and therefore the externally visible walls are the supporting structure for the building. In this case, the subfloor masonry walls can be expected to behave as full brickwork walls.

Effects on brick veneer structures

Because the load-bearing structure of a brick veneer building is the frame that makes up the interior leaf of the external walls plus perhaps the internal walls, depending on the type of roof, the building can be expected to behave as a framed structure, except that the external masonry will behave in a similar way to the external leaf of a full masonry structure.

Water Service and Drainage

У.

Where a water service pipe, a sewer or stormwater drainage pipe is in the vicinity of a building, a water leak can cause erosion, swelling or saturation of susceptible soil. Even a minuscule leak can be enough to saturate a clay foundation. A leaking tap near a building can have the same effect. In addition, trenches containing pipes can become watercourses even though backfilled, particularly where broken rubble is used as fill. Water that runs along these trenches can be responsible for serious erosion, interstrata seepage into subfloor areas and saturation.

Pipe leakage and trench water flows also encourage tree and shrub roots to the source of water, complicating and exacerbating the problem.

Poor roof plumbing can result in large volumes of rainwater being concentrated in a small area of soil:

 Incorrect falls in roof guttering may result in overflows, as may gutters blocked with leaves etc.

- · Corroded guttering or downpipes can spill water to ground.
- Downpipes not positively connected to a proper stormwater collection system will direct a concentration of water to soil that is directly adjacent to footings, sometimes causing large-scale problems such as erosion, saturation and migration of water under the building.

Seriousness of Cracking

In general, most cracking found in masonry walls is a cosmetic nuisance only and can be kept in repair or even ignored. The table below is a reproduction of Table C1 of AS 2870.

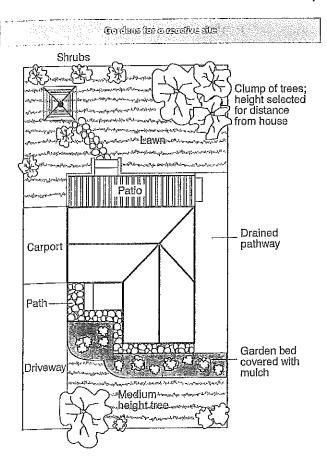
AS 2870 also publishes figures relating to cracking in concrete floors, however because wall cracking will usually reach the critical point significantly earlier than cracking in slabs, this table is not reproduced here.

Prevention/Cure

Plumbing Where building movement is caused by water service, roof plumbing, sewer or stormwater failure, the remedy is to repair the problem. It is prudent, however, to consider also rerouting pipes away from the building where possible, and relocating taps to positions where any leakage will not direct water to the building vicinity. Even where gully traps are present, there is sometimes sufficient spill to create erosion or saturation, particularly in modern installations using smaller diameter PVC fixtures. Indeed, some gully traps are not situated directly under the taps that are installed to charge them, with the result that water from the tap may enter the backfilled trench that houses the sewer piping. If the trench has been poorly backfilled, the water will either pond or flow along the bottom of the trench. As these trenches usually run alongside the footings and can be at a similar depth, it is not hard to see how any water that is thus directed into a trench can easily affect the foundation's ability to support footings or even gain entry to the subfloor area.

Ground drainage

In all soils there is the capacity for water to travel on the surface and below it. Surface water flows can be established by inspection during and after heavy or prolonged rain. If necessary, a grated drain system connected to the stormwater collection system is usually an easy solution.


It is, however, sometimes necessary when attempting to prevent water migration that testing be carried out to establish watertable height and subsoil water flows. This subject is referred to in BTF 19 and may properly be regarded as an area for an expert consultant.

Protection of the building perimeter

It is essential to remember that the soil that affects footings extends well beyond the actual building line. Watering of garden plants, shrubs and trees causes some of the most serious water problems.

For this reason, particularly where problems exist or are likely to occur, it is recommended that an apron of paving be installed around as much of the building perimeter as necessary. This paving

Description of typical damage and required repair	Approximate crack width limit (see Note 3)	Damage category
Hairline cracks	<0.1 mm	0
Fine cracks which do not need repair	<1 mm	1
Cracks noticeable but easily filled. Doors and windows stick slightly	<5 mm	2
Cracks can be repaired and possibly a small amount of wall will need to be replaced. Doors and windows stick. Service pipes can fracture. Weathertightness often impaired	5–15 mm (or a number of cracks 3 mm or more in one group)	3
Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows. Window and door frames distort. Walls lean or bulge noticeably, some loss of bearing in beams. Service pipes disrupted	15–25 mm but also depend on number of cracks	4

should extend outwards a minimum of 900 mm (more in highly reactive soil) and should have a minimum fall away from the building of 1:60. The finished paving should be no less than 100 mm below brick vent bases.

It is prudent to relocate drainage pipes away from this paving, if possible, to avoid complications from future leakage. If this is not practical, earthenware pipes should be replaced by PVC and backfilling should be of the same soil type as the surrounding soil and compacted to the same density.

Except in areas where freezing of water is an issue, it is wise to remove taps in the building area and relocate them well away from the building – preferably not uphill from it (see BTF 19).

It may be desirable to install a grated drain at the outside edge of the paving on the uphill side of the building. If subsoil drainage is needed this can be installed under the surface drain.

Condensation

In buildings with a subfloor void such as where bearers and joists support flooring, insufficient ventilation creates ideal conditions for condensation, particularly where there is little clearance between the floor and the ground. Condensation adds to the moisture already present in the subfloor and significantly slows the process of drying out. Installation of an adequate subfloor ventilation system, either natural or mechanical, is desirable.

Warning: Although this Building Technology File deals with cracking in buildings, it should be said that subfloor moisture can result in the development of other problems, notably:

- Water that is transmitted into masonry, metal or timber building elements causes damage and/or decay to those elements.
- High subfloor humidity and moisture content create an ideal environment for various pests, including termites and spiders.
- Where high moisture levels are transmitted to the flooring and walls, an increase in the dust mite count can ensue within the living areas. Dust mites, as well as dampness in general, can be a health hazard to inhabitants, particularly those who are abnormally susceptible to respiratory ailments.

The garden

The ideal vegetation layout is to have lawn or plants that require only light watering immediately adjacent to the drainage or paving edge, then more demanding plants, shrubs and trees spread out in that order.

Overwatering due to misuse of automatic watering systems is a common cause of saturation and water migration under footings. If it is necessary to use these systems, it is important to remove garden beds to a completely safe distance from buildings.

Existing trees

Where a tree is causing a problem of soil drying or there is the existence or threat of upheaval of footings, if the offending roots are subsidiary and their removal will not significantly damage the tree, they should be severed and a concrete or metal barrier placed vertically in the soil to prevent future root growth in the direction of the building. If it is not possible to remove the relevant roots without damage to the tree, an application to remove the tree should be made to the local authority. A prudent plan is to transplant likely offenders before they become a problem.

Information on trees, plants and shrubs

State departments overseeing agriculture can give information regarding root patterns, volume of water needed and safe distance from buildings of most species. Botanic gardens are also sources of information. For information on plant roots and drains, see Building Technology File 17.

Excavation

Excavation around footings must be properly engineered. Soil supporting footings can only be safely excavated at an angle that allows the soil under the footing to remain stable. This angle is called the angle of repose (or friction) and varies significantly between soil types and conditions. Removal of soil within the angle of repose will cause subsidence.

Remediation

Where erosion has occurred that has washed away soil adjacent to footings, soil of the same classification should be introduced and compacted to the same density. Where footings have been undermined, augmentation or other specialist work may be required. Remediation of footings and foundations is generally the realm of a specialist consultant.

Where isolated footings rise and fall because of swell/shrink effect, the homeowner may be tempted to alleviate floor bounce by filling the gap that has appeared between the bearer and the pier with blocking. The danger here is that when the next swell segment of the cycle occurs, the extra blocking will push the floor up into an accentuated dome and may also cause local shear failure in the soil. If it is necessary to use blocking, it should be by a pair of fine wedges and monitoring should be carried out fortnightly.

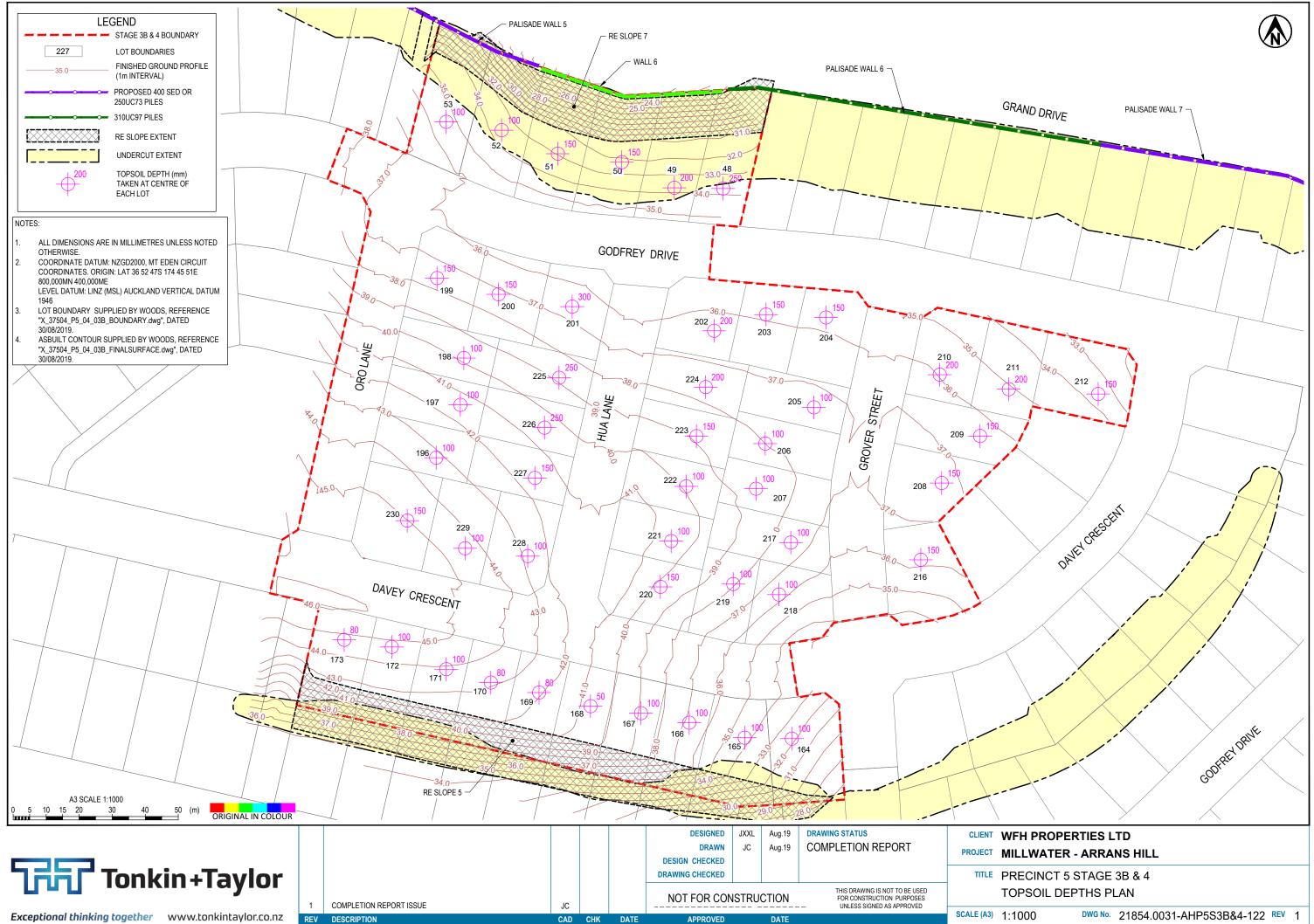
This BTF was prepared by John Lewer FAIB, MIAMA, Partner, Construction Diagnosis.

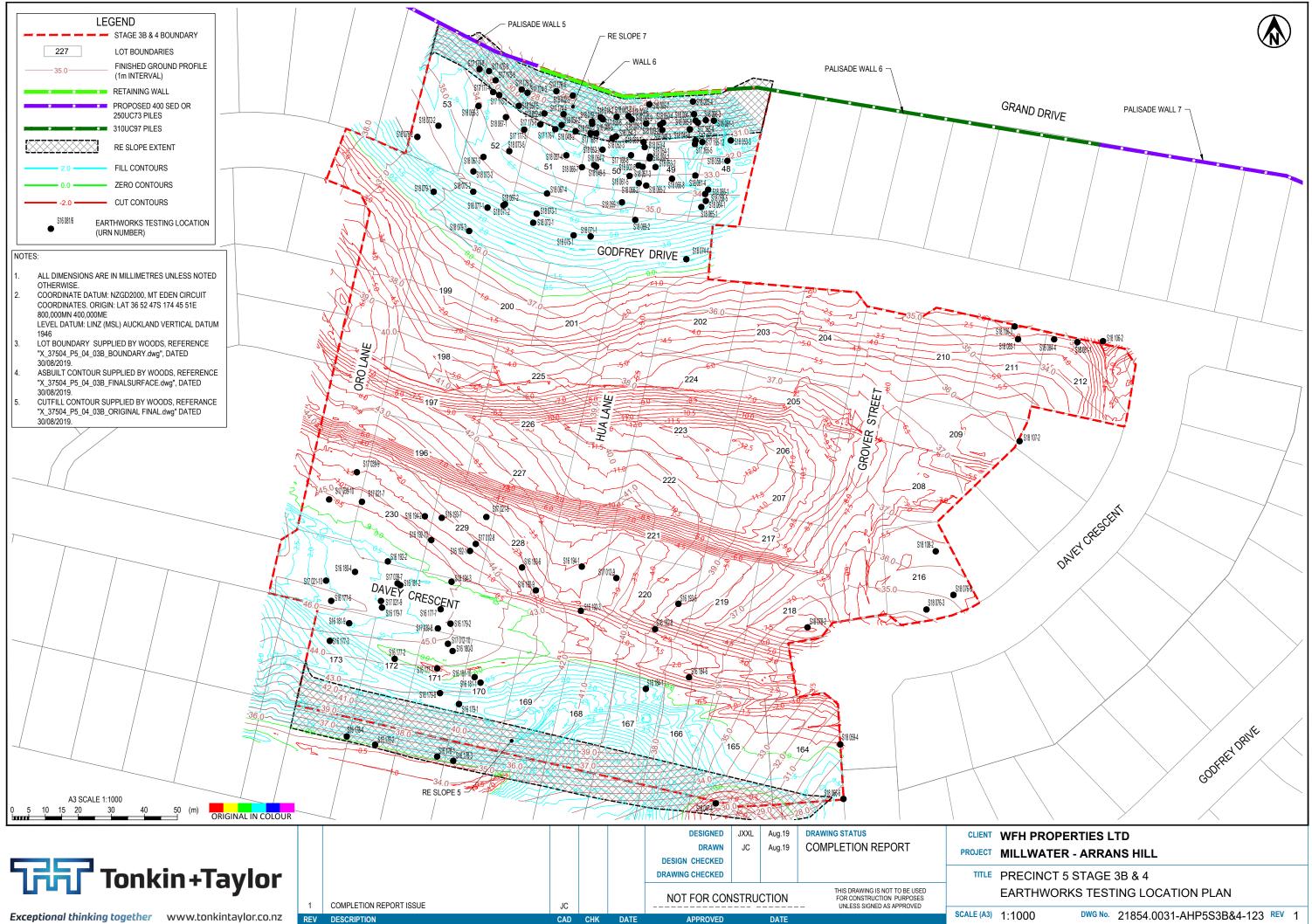
The information in this and other issues in the series was derived from various sources and was believed to be correct when published.

The information is advisory, it is provided in good faith and not claimed to be an exhaustive treatment of the relevant subject.

Further professional advice needs to be obtained before taking any action based on the information provided.


Distributed by **CSIRO** PUBLISHING PO Box 1139, Collingwood 3066, Australia Freecall 1800 645 051 Tel (03) 9662 7666 Fax (03) 9662 7555 www.publish.csiro.au Email: publishing.sales@csiro.au


© CSIRO 2003. Unauthorised copying of this Building Technology file is prohibited


Appendix E: Test Results

- · 21854.0031-AHP5S3B&4-121
- 21854.0031–AHP5S3B&4–122
- 21854.0031-AHP5S3B&4-123
- Soil Expansion Test Results
- Post Earthworks Investigation Borehole Logs (HA3B–1 to HA3B–21)
- Earthworks Test Results

- Post Earthworks Investigation Plan
- Topsoil Depths Plan
- Earthworks Testing Location Plan

Our Ref: 1009870.0.0.0/Rep 1 Customer Ref: 21854.0031 16 May 2019

Tonkin+Taylor PO Box 5271, Wellesley Street, Auckland 1141

Attention: Mr James Lee

Dear James

Millwater, Precinct 5, Orewa West - Stage 3, Stage 4A, Stage 4B, Stage 4C and Stage 4D

Laboratory Test Report

Samples from the above mentioned site have been tested as received according to your instructions. Test results are included in this report.

Samples were destroyed during testing.

Descriptions are enclosed for your information, but are not covered under the IANZ endorsement of this report.

Please reproduce this report in full when transmitting to others or including in internal reports.

If we can be of any further assistance, feel free to get in touch. Contact details are provided at the bottom of this page.

GEOTECHNICS LTD

Report prepared by:

Sim Tirunahari I am the author of this document 2019.05.16 12:37:54 +12'00'

Sim Tirunahari Soils Laboratory Manager Approved Signatory

Report checked by:

16-May-19

James Kimiangatau Laboratory Technician

This document consists of 7 pages.

Authorised for Geotechnics by:

Steven Anderson Project Director

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation

t:\geotechnicsgroup\projects\1009870\issueddocuments\20190516.millwater p5_stage3,4a,4b,4c,4d.st.final.rep1.docx

Ground Floor, 19 Morgan Street, Newmarket, Auckland 1023

PO Box 9360, Newmarket, Auckland 1149

p 64 9 356 3510

GEOTECHNICS www.geotechnics.co.nz

Site: Millwater, Precinct 5, Orewa West - Stage 3

Your Job No: 21854.0031

Our Job No: 1009870.0.0.0

Test Method Used: AS 1289.7.1.1 - 2003 Determination of the Shrink - Swell Index

				SUMMARY O	F SHRINK - S	WELL TEST F	RESULTS					
HA No.:			6	6	7	7	8	8	11	11	17	17
DEPTH		(m)	0.5	1.0	0.5	1.0	0.5	1.0	0.5	1.0	0.5	1.0
Applied Pressur	e	(kPa)	40	40	40	40	40	40	40	40	40	40
	Initial Water Content	(%)	31.4	37.1	35.5	38.1	36.5	36.2	35.0	30.1	36.9	38.5
SWELL	Bulk Density	(t/m³)	1.85	1.72	1.76	1.78	1.57	1.79	1.62	1.86	1.77	1.73
TEST	Dry Density	(t/m³)	1.41	1.25	1.30	1.29	1.15	1.31	1.20	1.43	1.29	1.25
	Final Water Content	(%)	32.4	38.0	36.0	38.4	37.4	37.7	36.8	31.1	38.1	40.2
	Swelling Strain	(%)	0.12	0.03	0.05	-0.03	-0.02	0.34	0.02	0.02	0.04	0.04
	Initial Water Content	(%)	29.9	34.6	37.2	37.0	34.7	33.8	32.6	30.6	37.5	39.9
SHRINKAGE	Shrinkage Strain	(%)	1.2	1.5	3.6	2.9	1.8	2.0	1.6	1.5	2.5	3.2
TEST	Inert Material Estimate in the Soil Specimen	(%)	0	0	0	0	0	0	0	0	0	0
	Soil Crumbling During Shrin	kage	None	None	None	None	None	None	None	None	None	None
	Cracking of the Shrinkage S	pecimen	Minor	Moderate	Moderate	Moderate	Moderate	Minor	Minor	Minor	Moderate	Moderate
SHRINK - SWELL INDEX (%)		0.7	0.9	2.0	1.6	1.0	1.2	0.9	0.8	1.4	1.8	

Ground Floor, 19 Morgan Street, Newmarket, Auckland 1023

PO Box 9360, Newmarket, Auckland 1149

p 64 9 356 3510 ICS www.geotechnics.co.nz

Site: Millwater, Precinct 5, Orewa West - Stage 4A

Your Job No: 21854.0031

Our Job No: 1009870.0.0.0

Test Method Used: AS 1289.7.1.1 - 2003 Determination of the Shrink - Swell Index

SUMMARY OF SHRINK - SWELL TEST RESULTS										
HA No.:			4	4	5	5 1.0	10 0.5	10 1.0	12 0.5	12
DEPTH		(m)	0.5	1.0	0.5					1.0
Applied Pressure		(kPa)	40	40	40	40	40	40	40	40
	Initial Water Content	(%)	31.8	39.5	31.3	41.7	31.7	39.5	41.8	46.6
SWELL	Bulk Density	(t/m³)	1.80	1.78	1.78	1.73	1.79	1.73	1.70	1.70
TEST	Dry Density	(t/m³)	1.37	1.28	1.36	1.22	1.36	1.24	1.20	1.16
	Final Water Content	(%)	33.4	39.8	34.2	43.9	35.4	41.3	44.7	48.7
	Swelling Strain	(%)	-0.01	0.04	0.10	0.05	0.21	0.03	0.08	0.11
	Initial Water Content	(%)	32.5	46.0	30.6	32.1	35.5	46.5	35.5	40.6
SHRINKAGE	Shrinkage Strain	(%)	2.6	6.2	2.0	1.0	4.5	7.4	2.6	5.2
TEST	Inert Material Estimate in the Soil Specimen	(%)	0	0	0	0	0	0	0	0
	Soil Crumbling During Shrinkage		Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
	Cracking of the Shrinkage Specimen		Moderate	Major	Moderate	Minor	Major	Major	Moderate	Moderate
SHRINK - SWELL INDEX (%)		1.4	3.4	1.1	0.6	2.5	4.1	1.5	2.9	

Ground Floor, 19 Morgan Street, Newmarket, Auckland 1023

PO Box 9360, Newmarket, Auckland 1149

p 64 9 356 3510 s www.geotechnics.co.nz

Site: Millwater, Precinct 5, Orewa West - Stage 4A

Your Job No: 21854.0031 Our Job No: 1009870.0.00

Test Method Used: AS 1289.7.1.1 - 2003 Determination of the Shrink - Swell Index

			SUMMA	ARY OF SHRINK	- SWELL TEST	RESULTS	
HA No.:			15	15	16	16	
DEPTH		(m)	0.5	1.0	0.5	1.0	
Applied Pressur	e	(kPa)	40	40	40	40	
	Initial Water Content	(%)	42.0	39.9	48.1	61.5	
SWELL	Bulk Density	(t/m³)	1.75	1.75	1.73	1.61	
TEST	Dry Density	(t/m³)	1.23	1.25	1.17	1.00	
	Final Water Content	(%)	45.3	43.7	50.5	64.1	
	Swelling Strain	(%)	0.66	0.44	0.25	0.06	
	Initial Water Content	(%)	40.7	40.9	36.3	40.1	
SHRINKAGE	Shrinkage Strain	(%)	7.8	6.4	3.9	3.5	
TEST	Inert Material Estimate in the Soil Specimen	(%)	0	0	0	0	
	Soil Crumbling During Shrin	Nil	Nil	Nil	Nil		
	Cracking of the Shrinkage S	Specimen	Minor	Major	Moderate	Moderate	
SHRINK - SWEL	LINDEX	(%)	4.5	3.7	2.2	2.0	

Remarks: The test results are IANZ accredited.

Entered by: JK

Checked by: ST

Ground Floor, 19 Morgan Street, Newmarket, Auckland 1023

PO Box 9360, Newmarket, Auckland 1149 p 64 9 356 3510

NICS www.geotechnics.co.nz

Site: Millwater, Precinct 5, Orewa West - Stage 4B

Your Job No: 21854.0031 Our Job No: 1009870.0.00

Test Method Used: AS 1289.7.1.1 - 2003 Determination of the Shrink - Swell Index

	SUMMARY OF SHRINK - SWELL TEST RESULTS								
HA No.:			1	1	2	2	3	3	
DEPTH (m)			0.5	1.0	0.5	1.0	0.5	1.0	
Applied Pressure (kPa		(kPa)	40	40	40	40	40	40	
	Initial Water Content	(%)	27.2	32.1	26.9	32.7	27.3	24.1	
SWELL	Bulk Density	(t/m³)	1.76	1.83	1.85	1.79	1.79	1.86	
TEST	Dry Density	(t/m³)	1.38	1.39	1.46	1.35	1.41	1.50	
	Final Water Content	(%)	33.1	34.3	30.8	35.6	31.8	27.4	
	Swelling Strain	(%)	0.21	0.13	0.49	0.22	0.30	0.14	
	Initial Water Content	(%)	27.2	30.1	28.8	28.1	30.0	28.2	
SHRINKAGE	Shrinkage Strain	(%)	1.9	1.3	2.7	2.5	2.3	1.9	
TEST	Inert Material Estimate in the Soil Specimen	(%)	0	0	0	0	0	0	
	Soil Crumbling During Shrinkage		Nil	Nil	Nil	Nil	Nil	Nil	
	Cracking of the Shrinkage Specimen		Moderate	Moderate	Moderate	Moderate	Moderate	Moderate	
SHRINK - SWELI		(%)	1.1	0.7	1.6	1.5	1.4	1.1	

Remarks: The test results are IANZ accredited.

Entered by: JK

Ground Floor, 19 Morgan Street, Newmarket, Auckland 1023

PO Box 9360, Newmarket, Auckland 1149

p 64 9 356 3510 cs www.geotechnics.co.nz

Site: Millwater, Precinct 5, Orewa West - Stage 4C

Your Job No: 21854.0031

Our Job No: 1009870.0.0.0

Test Method Used: AS 1289.7.1.1 - 2003 Determination of the Shrink - Swell Index

			SUMMA	ARY OF SHRIN	K - SWELL TEST	RESULTS				
HA No.:			9	9 1.0	13 0.5	13 1.0	14 0.5	14 1.0	18 1.0	18 1.0
DEPTH		(m)	0.5							
Applied Pressure		(kPa)	40	40	40	40	40	40	40	40
	Initial Water Content	(%)	58.6	45.1	27.5	28.6	26.6	30.4	27.4	28.4
SWELL	Bulk Density	(t/m³)	1.60	1.64	1.91	1.89	1.90	1.84	1.90	1.83
TEST	Dry Density	(t/m³)	1.01	1.13	1.50	1.47	1.50	1.41	1.49	1.43
	Final Water Content	(%)	60.1	47.3	30.4	30.8	28.4	33.1	28.7	31.0
	Swelling Strain	(%)	0.02	-0.10	0.22	0.32	0.04	0.31	0.03	0.23
	Initial Water Content	(%)	49.7	54.1	28.7	37.1	33.4	26.4	27.9	27.9
SHRINKAGE	Shrinkage Strain	(%)	5.7	5.8	4.0	4.9	4.0	3.0	1.3	1.0
TEST	Inert Material Estimate in the Soil Specimen	(%)	0	0	0	0	0	0	0	0
	Soil Crumbling During Shrinkage		Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
	Cracking of the Shrinkage Specimen		Major	Major	Moderate	Moderate	Moderate	Moderate	Moderate	Moderate
SHRINK - SWELL INDEX (%)		(%)	3.2	3.2	2.3	2.8	2.2	1.7	0.7	0.6

Ground Floor, 19 Morgan Street, Newmarket, Auckland 1023

PO Box 9360, Newmarket, Auckland 1149

p 64 9 356 3510 s www.geotechnics.co.nz

Site: Millwater, Precinct 5, Orewa West - Stage 4D

Your Job No: 21854.0031 Our Job No: 1009870.0.00

Test Method Used: AS 1289.7.1.1 - 2003 Determination of the Shrink - Swell Index

	SUMMARY OF SHRINK - SWELL TEST RESULTS								
HA No.:			19	19	20	20	21	21	
DEPTH (m)			0.5	1.0	0.5	1.0	0.5 40	1.0	
Applied Pressure (kPa)		40	40	40	40	40			
	Initial Water Content	(%)	34.3	24.9	35.6	38.2	39.4	37.5	
SWELL	Bulk Density	(t/m³)	1.71	1.84	1.78	1.74	1.78	1.69	
TEST	Dry Density	(t/m³)	1.27	1.47	1.31	1.26	1.28	1.23	
	Final Water Content	(%)	37.5	29.1	36.6	39.3	39.5	41.2	
	Swelling Strain	(%)	0.04	0.80	-0.02	0.02	0.09	0.16	
	Initial Water Content	(%)	35.4	28.6	36.2	36.7	29.8	51.4	
SHRINKAGE	Shrinkage Strain	(%)	2.6	3.0	2.0	1.8	4.3	10.1	
TEST	Inert Material Estimate in the Soil Specimen	(%)	0	0	0	0	0	0	
	Soil Crumbling During Shrinkage		Nil	Nil	Nil	Nil	Nil	Nil	
	Cracking of the Shrinkage Specimen		Moderate	Moderate	Moderate	Moderate	Moderate	Moderate	
SHRINK - SWELI		(%)	1.5	1.9	1.1	1.0	2.4	5.6	

Remarks: The test results are IANZ accredited.

Entered by: JK

Our Ref: 1100151.0.0.0/ Rep 1 Customer Ref: 21854.0031 09 August 2019

Tonkin + Taylor PO Box 5271, Wellesley Street, Auckland 1141

Attention: Mr James Lee

Dear James

Millwater, Orewa West - Precinst 5 - Stage 4

Test Results

Samples from the above mentioned site have been tested as received according to your instructions and the results are included in this report.

Samples were destroyed during testing.

If we can be of any further assistance, feel free to get in touch. Contact details are provided at the bottom of this page.

GEOTECHNICS LTD

Report prepared by:

Sim Tirunahari I am the author of this document 2019.08.09 12:39:12 +12'00'

Sim Tirunahari Soils Laboratory Manager Approved Signatory Authorised for Geotechnics by:

Andero-

Steven Anderson Project Director

Report checked by:

Z

James Kimiangatau Laboratory Technician

This document consists of 5 pages

9-Aug-19 t:\geotechnicsgroup\projects\1100151\issueddocuments\20190809.millwater_orewa west_p5_stage 4.st.final.rep1.docx

GEOTECHNICS	Newmarket Auckland 1023 New Zealand			Geotechnics Project Number QESTLab Work Order ID Customer Project ID	1100151.0000 W19AK-0048 21854.0031
	p: + 64 9 356 3510 Determination of the S	Shrink - Sv	well Index - As	5 1289 Test 7.1.1 - 2003	
		TES	T DETAILS		
LOCATION	Description	Millwater	, Orewa West - Pre	cinct 5 - Stage 4	
	Data	N/A			
SAMPLE	Geotechnics ID	S19AK000)151	BH No	
	Reference	LOT 165_	HA1_1	Top Depth	0.5m
	Sampled By	Others, Te	ested As Received	Bottom Depth	
	Description				
SPECIMEN	Reference	N/A		Depth	N/A
	Description	N/A			
		TES	T RESULTS		
APPLIED PRESSURE		(kPa)		40	
	Initial Water Content	(%)		32.6	
	Bulk Density	(t/m³)		1.75	
SWELL TEST	Dry Density	(t/m³)		1.32	
	Final Water Content	(%)		35.6	
	Swelling Strain	(%)		0.07	
	Initial Water Content	(%)		35.0	
	Shrinkage Strain	(%)		3.9	
SHRINKAGE TEST	Inert Material Estimate in the Soil Specimen	(%)		0	
	Soil Crumbling During Shrinkage			None	
	Cracking of the Shrinkage Specimen			Minor	
SHRINK - SWELL INDEX		(%)		2.2	
Results apply only to sampl	e tested. • This report may be reproduced or		T REMARKS	during testing will be retained for on	e month from the date of this repo
efore being discarded.		-			All tests reported herein have b
Approved Signatory Date	Sim Tirunahari 9/08/2019			ACCREDITED LABORATORY	performed in accordance with laboratory's scope of accreditation

l

Page 2 of 5

					Page 3 01 5
	19 - 23 Morgan Street				
	Newmarket			Geotechnics Project Number	1100151.0000
	Auckland 1023			QESTLab Work Order ID	W19AK-0048
	New Zealand			Customer Project ID	21854.0031
GEOTECHNICS	p: + 64 9 356 3510				
	Determination of the S	Shrink - Sv	well Index - AS	5 1289 Test 7.1.1 - 2003	
		TES	T DETAILS		
LOCATION	Description	Millwater	, Orewa West - Pre	cinct 5 - Stage 4	
	Data	N/A			
SAMPLE	Geotechnics ID	S19AK000	152	BH No	
	Reference	LOT 165_I	HA1_2	Top Depth	1.0m
	Sampled By	Others, Te	ested As Received	Bottom Depth	
	Description				
SPECIMEN	Reference	N/A		Depth	N/A
	Description	N/A			
			T RESULTS		
APPLIED PRESSURE		(kPa)		40	
	1	(KPd)		40	
	Initial Water Content	(%)		41.3	
	Bulk Density	(t/m³)		1.75	
SWELL TEST	Dry Density	(t/m³)		1.24	
		(0,111)			
	Final Water Content	(%)		42.7	
	Swelling Strain	(%)		0.10	
	Initial Water Content	(0/)		34.7	
	Initial Water Content	(%)		54.7	
	Shrinkage Strain	(%)		3.8	
SHRINKAGE TEST	Inert Material Estimate in the Soil Specimen	(%)		0	
	Soil Crumbling During Shrinkage			None	
	Cracking of the Shrinkage Specimen			Moderate	
SHRINK - SWELL INDEX	I	(0/)		2.2	
STATISTIC SWELL INDEX		(%)		۲.۷	
		TES	T REMARKS		
	e tested. • This report may be reproduced or	nly in full. • Sai	mples not destroyed o	during testing will be retained for on	e month from the date of this repo
efore being discarded.					
pproved Signatory	Sim Tirunahari			ANZ	All tests reported herein have to performed in accordance with
	9/08/2019				laboratory's scope of accreditation

Page 3 of 5

	19 - 23 Morgan Street				Page 4 of 5
C	Newmarket Auckland 1023 New Zealand			Geotechnics Project Number QESTLab Work Order ID Customer Project ID	1100151.0000 W19AK-0048 21854.0031
GEOTECHNICS	p: + 64 9 356 3510				
	Determination of the S	Shrink - Sv	well Index - AS	5 1289 Test 7.1.1 - 2003	
		TES	T DETAILS		
LOCATION	Description	Millwater	, Orewa West - Pre	cinct 5 - Stage 4	
	Data	N/A			
SAMPLE	Geotechnics ID	S19AK000	153	BH No	
	Reference	LOT 166_	HA1_1	Top Depth	0.5m
	Sampled By	Others, Te	ested As Received	Bottom Depth	
	Description				
SPECIMEN	Reference	N/A		Depth	N/A
	Description	N/A			
		TES	T RESULTS		
APPLIED PRESSURE		(1.5.)		40	
APPLIED PRESSURE		(kPa)		40	
	Initial Water Content	(%)		30.6	
	Bulk Density	(t/m³)		1.85	
SWELL TEST	Dry Density	(t/m³)		1.42	
	Final Water Content	(%)		32.8	
	Swelling Strain	(%)		0.18	
	Initial Water Content	(%)		25.4	
		(76)		23.4	
	Shrinkage Strain	(%)		3.2	
		(/			
SHRINKAGE TEST	Inert Material Estimate in the Soil	(%)		0	
	Specimen				
	Soil Crumbling During Shrinkage			None	
	Cracking of the Shrinkage Specimen			Moderate	
	1				
SHRINK - SWELL INDEX		(%)		1.8	
		TES	T REMARKS		
	e tested. • This report may be reproduced or	nly in full. • Sa	mples not destroyed o	during testing will be retained for or	ne month from the date of this repor
efore being discarded.					
pproved Signatory	Sim Tirunahari			ANZ	All tests reported herein have b performed in accordance with
Date	9/08/2019			ACCREDITED LABORATORY	laboratory's scope of accreditation.

Page 4 of 5

GEOTECHNICS	Newmarket Auckland 1023 New Zealand p: + 64 9 356 3510			Geotechnics Project Number QESTLab Work Order ID Customer Project ID	1100151.0000 W19AK-0048 21854.0031
		Shrink - Sv	well Index - AS	5 1289 Test 7.1.1 - 2003	
		TES	T DETAILS		
LOCATION	Description	Millwater	, Orewa West - Pre	cinct 5 - Stage 4	
	Data	N/A			
SAMPLE	Geotechnics ID	S19AK000	154	BH No	
	Reference	LOT 166_I	HA1_2	Top Depth	1.0m
	Sampled By	Others, Te	ested As Received	Bottom Depth	
	Description				
SPECIMEN	Reference	N/A		Depth	N/A
	Description	N/A			
		TES	T RESULTS		
APPLIED PRESSURE		(kPa)		40	
	Initial Water Content	(%)		29.6	
	Bulk Density	(t/m³)		1.64	
SWELL TEST	Dry Density	(t/m³)		1.27	
	Final Water Content	(%)		36.7	
	Swelling Strain	(%)		0.13	
	Initial Water Content	(%)		29.1	
	Shrinkage Strain	(%)		4.4	
SHRINKAGE TEST	Inert Material Estimate in the Soil Specimen	(%)		0	
	Soil Crumbling During Shrinkage			None	
	Cracking of the Shrinkage Specimen			Moderate	
SHRINK - SWELL INDEX		(%)		2.5	
Results apply only to sampl efore being discarded.	e tested. • This report may be reproduced or		T REMARKS	during testing will be retained for on	e month from the date of this repo
Approved Signatory Date	Sim Tirunahari 9/08/2019			ACCREDITED LABORATORY	All tests reported herein have to performed in accordance with laboratory's scope of accreditation

Page 5 of 5

HOLE Id: HA3B-1

PROJECT: Millwa	ter - A	rrar	ns Hil	Il Precinct 5	LO	CAT	ION:	Arra	n Drive	e, Millv	vater		JOB No.: 21854.0031 - 2018
CO-ORDINATES: WGS84	174.66 -36.58		1		DRII	LL TY	'PE: \$	50mm	hand au	ıger			LE STARTED: 19/02/2019
R.L.:	00.00	001			DRI	LL M	ETHO	DD: H	IA				LE FINISHED: 19/02/2019 LLED BY: T+T
DATUM:													GGED BY: JASM CHECKED: OP
GEOLOGICAL												ENC	GINEERING DESCRIPTION
GEOLOGICAL UNIT, GENERIC NAME,										o		т	
ORIGIN, MATERIAL COMPOSITION.		(%)		SCALA PENETROMETER	TESTS					WEATHERING	È	TRENGT Pa)	Description and Additional Observations
		CORE RECOVERY (%)		(Blows/100mm)		<i>"</i>		Ê	0010	SE WE	STRENGTH/DENSITY CLASSIFICATION	SHEAR STRENGTH (KPa)	
	WATER	CORE RE	METHOD	0 1 2 3 4 5 6 7 8 9		SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE	STRENG	20 20 20 20 20 20 20 20 20 20 20 20 20 2	
									≗∾ ⊵TS				Topsoil.
								-	$\frac{\Delta D}{D}$.				
					a			-	\otimes	D-M	Н		SILT, with some clay, with minor sand; orangi yellow. Hard; non-plastic; dry to moist; sand, t
					• UTP				\otimes				
					SS sample @ 0.4m HA - S 14 -			0.5-	\boxtimes				
					0.5m			0.5	\boxtimes				
					●UTP		_		\otimes				
							-	-	\bigotimes				
					●UTP		ł		\otimes				
					SS Sample		- 29	1.0-	\otimes				
					@ 0.9m		ł		***				
					● UTP		-		***				
							-		888				
							-		***				
		100	¥		●>214 kPa		-	1.5-	888				
							-		\otimes				1.6 - 1.7m: Sandy SILT; grey
							-		***				SILT, with some clay, with minor sand; orang
					● UTP		-		***				yellow. Hard; non-plastic; dry to moist; sand,
							-		***	М	VSt		Clayey SILT, with minor sand, with trace grav
							- 28	2.0-	\otimes				light yellow. Stiff to hard; low plasticity; moist; sand, fine; gravel, medium.
					● 150/21 kPa		-	-	***				
							-	-	***				
							-		\otimes				
					● 205/92 kPa		-		\otimes				
							[2.5-	\otimes				
							[-	\otimes		St		Clayey SILT, with minor sand, with trace grav light yellow. Stiff; low plasticity; moist; sand, fi
					● 75/40 kPa		-	-	\otimes				gravel, medium, Mudstone.
	DRY 19/02/2019						-		\otimes		н		Clayey SILT, with minor sand, with trace grav light yellow. Hard; low plasticity; moist; sand,
	DRY 19/0				●>214 kPa		27	<u>3.0</u> -	\otimes				fine; gravel, medium, Mudstone.
													3m: Target depth
							-						
							-	-					
							-						
							-	3.5-					
							-						
							-						
							-						
							-						
OMMENTS: Shear \	/ane #1	32 -	19mr	m blade			L						

HOLE Id: HA3B-2

PROJECT: Millw	vater - A	rra	ins	Hill Precinct 5		LOC	CATIO	ON:	Arra	n Drive	e, Mill	water		JOB No.: 21854.0031 - 2018
CO-ORDINATES: WGS84	174.60 -36.58									hand au	uger			LE STARTED: 19/02/2019 LE FINISHED: 19/02/2019
R.L.: DATUM:						DRI	LL ME	THC	JD: F	IA				ILLED BY: T+T GGED BY: MTAN CHECKED: OP
GEOLOGICAL														GINEERING DESCRIPTION
GEOLOGICAL UNIT, GENERIC NAME,														
GENERAL RAVIE, ORIGIN, MATERIAL COMPOSITION.	æ		UURE RECOVERT (%)	SCALA PENETROMETER (Blows/100mm)		TESTS	LES			GRAPHIC LOG	MOISTURE WEATHERING	STRENGTH/DENSITY CLASSIFICATION	SHEAR STRENGTH (KPa)	Description and Additional Observations
	WATER		3	0 1 2 3 4 5 6 7	89		SAMPLES	RL (m)	DEPTH (m)	GRAPI	MOIST	STREN	80 10 2 2 2 30 10 2 2 2	
						● UTP SS sample @ 0.4m ● UTP			0.5-		D	Н		Topsoil. Clayey SILT, with minor sand, with trace grave orangish brown. Hard; non-plastic; dry.
						● >228 kPa				**	<u> </u>	1/01		
						SS sample		25	1.0-	\otimes	D-M	VSt		Clayey SILT, with minor sand, with trace grav reddish orange. Very stiff; low plasticity; dry to moist.
						@ 0.9m			•	\otimes				
						● 146/67 kPa	-		-	\bigotimes				
		007	501	AH		● 156/86 kPa	-		1.5 ⁻					
						● 114/63 kPa	-		-		M	VSt-H		Silty CLAY, with trace sand; orangish grey. V
						● 169/72 kPa	-	24	2.0					stiff to hard; low plasticity; moist.
						● >228 kPa	-		2.5-	\bigotimes				
						● 195/101 kPa	-		-	\bigotimes				Silty CLAY, with trace gravel; orangish blue. stiff to hard; low plasticity; moist.
	DRY 10/07/2010	RI 07/71												Cobble of moderately weathered, MUDSTON very weak
	DRY	1AU	+			● 182/75 kPa		23	<u>3.0</u>	\propto				Clayey SILT, with minor sand; orange brown. Very stiff to hard; low phasticity.
							-		-					· · · · · ·
							-		3.5-					
							-		-					
COMMENTS: Shear	Vane #6	60	- 1	9 mm blade. EOH @ Ta	rget De	pth of 3m				1				
3m														

HOLE Id: HA3B- 3

CO-ORDINATES:	ater - Ar 174.66		s Hill Precinct 5					n Drive hand au		water	ЦО	JOB No.: 21854.0031 - 2018 LE STARTED: 19/02/2019
R.L.: DATUM: GEOLOGICAL	-36.588						DD: F				HOI DRI LOC	LE FINISHED: 19/02/2019 ILLED BY: T+T GGED BY: BEJO CHECKED: OP GINEERING DESCRIPTION
GEOLOGICAL UNIT, GENERIC MANE ORIGIN, MATERIAL COMPOSITION	WATER	CORE RECOVERY (%)	SCALA PENETROMETER (Biows/100mm) 0 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TESTS	SAMPLES	RL (m)	DEPTH (m)	Caraphic Loo	MOISTURE WEATHERING	STRENGTH/DENSITY CLASSIFICATION	- 10 28 28 50 100 100 200 200	Description and Additional Observations
				● >214 kPa SS sample @ 0.4m ● 149/29 kPa		-	0.5-		D	VSt-H		SILT, with some clay, with trace sand; yellowi orange. Very stiff to hard; non-plastic; dry; sar fine.
				● UTP SS sample @ 0.9m ● UTP		- 53	1.0-					
		100	H	● 150/57 kPa ● >214 kPa	-	-	1.5-		М	_		Clayey SILT; light orangish yellow. Very stiff hard; low plasticity; moist.
				● 162/55 kPa		- 5	2.0-					
				● >214 kPa ● 208/104 kPa		-	2.5-			H		SILT, with some clay and sand, with trace gra greenish grey. Hard; low plasticity; moist; gra fine. Clayey SILT, with trace gravel; brownish orar Hard; low plasticity; moist; gravel, fine.
	DRY 19/02/2019			• UTP		27						3m: Target depth
						-	3.5-					

HOLE Id: HA3B- 4

PROJECT: Millw	ater - A	rra	ns ⊦	Hill Precinct 5	LO	CAT	ION:	Arra	n Drive	e, Mill	water		JOB No.: 21854.0031 - 2018
CO-ORDINATES: WGS84	174.66 -36.58				DRI	LL TY	PE:	50mm	hand au	lger			LE STARTED: 21/02/2019
R.L.:		1			DRI	LL M	IETHO	DD: H	ΗA				LE FINISHED: 21/02/2019 ILLED BY: T+T
DATUM:													GGED BY: BEJO CHECKED: JASM
		-										ENG	GINEERING DESCRIPTION
GENERIC NAME, ORIGIN, MATERIAL COMPOSITION.		CORE RECOVERY (%)	0	SCALA PENETROMETER (Blows/100mm)	TESTS	ES		(m)	GRAPHIC LOG	IRE WEATHERING	STRENGTH/DENSITY CLASSIFICATION	SHEAR STRENGTH (KPa)	Description and Additional Observations
	WATER	CORE F	METHOD	0 1 2 3 4 5 6 7 8 9		SAMPLES	RL (m)	DEPTH (m)	-		STREN	800232 300232	
							-		≗ TS ≥ TS = = = = ≥ = == ≥ = == ≥ = == ≥ = ==	D	VSt		Topsoil. Sandy SILT, with some clay; orangey brown.
					● 111/57 kPa SS sample @ 0.4m		-	- - - - 0.5	* * * *	M	St-VSt		Very stiff; low plasticity; dry. SILT, with some clay; greyish orange. Stiff to very stiff; low plasticity; moist.
					● 98/47 kPa		-		* * * * * * * * * * * * * * *				
					● 81/41 kPa SS sample		34 -	1.0-	× × ×				SILT, with some clay; yellowish brown. Stiff to very stiff; low plasticity; moist.
					@ 0.9m ● 89/33 kPa		-	- - -	× × × × × × × ×				
		100	HA		● 107/37 kPa		-	1.5-					
					● 101/36 kPa		-	-	× × × × × × × × × ×				Clayey SILT; pinkish brown. Stiff to very stiff; high plasticity; moist.
					● 85/31 kPa		33	2.0-	× × × · · · · · · · · · · · · · · · · ·				
					● 42/29 kPa		-	- - - 2.5-	* <u>*</u> *		F		Clayey SILT; pinkish brown. Firm; high plasti moist.
					● 106/34 kPa		-	-	× × ×		VSt		Clayey SILT; pinkish brown. Very stiff; high plasticity; moist.
	DRY 21/02/2019	6102/20/12					32	. 	× × ×				
							-	-					3m: Target depth
							-	3.5- -					
							-	-					
COMMENTS: Shear ole Depth 3m	Vane #	660	- 19	Omm blade									<u> </u>

HOLE Id: HA3B-5

Image: Stangle group of the stangle group	PROJECT: Millw	/ater -	Arı	ran	s H	lill Precinct 5	LOC	САТ	ION:	Arra	n Drive	e, Mill	water		JOB No.: 21854.0031 - 2018
GEOLOGICAL Image: Construction of the co	WGS84 R.L.:											ıger		HO DR	LE FINISHED: 20/02/2019 ILLED BY: T+T
Market in more common with more co															
Image: State in the state	GEOLOGICAL UNIT, GENERIC NAME, ORIGIN,			(%)			TECTO					THERING	٨		Description and
Image: Second			WATER	CORE RECOVERY	METHOD	(Blows/100mm)		SAMPLES	RL (m)	DEPTH (m)			STRENGTH/DENS CLASSIFICATION		
UTP Stample Image: Stample									-	-	⊵ TS	D	Н		Topsoil. SILT, with minor gravel; orangish brown. Hard.
SS sample St St Grevely SILT: yellowish orange. Stiff: non plastic; dy. • 74/31 kPa • 74/31 kPa • 1.5 M • 107/57 kPa • 8 2.6 • 0/5 kPa • 2.5 Vst • 0/5 kPa • 2.5 Vst • 0/5 kPa • 2.5 • 0/5 kPa • 2.7m: Effective refusal • 119/3 kPa • 119/3 kPa • 119/3 kPa • 119/3 kPa							SS sample @ 0.4m		-	- - - - - - - - - - - - - -					
9 5 9 5 Plattic y still, yellowish orange. Stiff to very high plasticity; moist. 9 5 9 74/31 kPa 1.5 M SHVSI Silty CLAY; yellowish orange. Stiff to very high plasticity; moist. 9 9 5 9 1.5 M SHVSI Silty CLAY; yellowish orange. Stiff to very high plasticity; moist. 9 9 9 9 9 9 9 9 9 107/57 kPa 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>37</td> <td>- - - 1.0-</td> <td></td> <td></td> <td></td> <td></td> <td></td>									37	- - - 1.0-					
• 74/31 kPa • 74/31 kPa • 1.5- • M SLVSt Sity CLAY; yellowish orange. Stiff to very high plasticity; moist. • 107/57 kPa • 9 2.0 • 8 S-F CLAY, with minor silt; yellowish orange. Stiff to very high plasticity; moist. • 6/5 kPa • 34/32 kPa • 2.5 • VSt CLAY, with minor silt; yellowish orange. Vistiff, high plasticity; moist. • 34/32 kPa • 119/43 kPa • 9 3.0							@ 0.9m		-	-	· · · · · · · · · · · · · · · · · · ·		St		Gravelly SILT; yellowish orange. Stiff; non- plastic; dry.
• 6/5 kPa • 8 2.0 • 8 2.0 • 5 F CLAY, with minor silt; yellowish orange. Stiff; high plasticity; moist. • 34/32 kPa • 34/32 kPa • 2.5 • 5 <td></td> <td></td> <td></td> <td>100</td> <td>ΗA</td> <td></td> <td>● 74/31 kPa</td> <td></td> <td>-</td> <td>- - - 1.5 - - -</td> <td></td> <td>М</td> <td>St-VSt</td> <td></td> <td>Silty CLAY; yellowish orange. Stiff to very stiff high plasticity; moist.</td>				100	ΗA		● 74/31 kPa		-	- - - 1.5 - - -		М	St-VSt		Silty CLAY; yellowish orange. Stiff to very stiff high plasticity; moist.
• 6/5 kPa • 34/32 kPa • 34/32 kPa • 2.5 • VSt CLAY, with minor silt, yellowish orange. Visitiff, high plasticity; moist. • 119/43 kPa • 119/43 kPa • 119/43 kPa • 2.7m: Effective refusal							● 107/57 kPa		-	-	× × × ×				
Image: state of the state o							● 6/5 kPa		36	2.0			S-F		CLAY, with minor silt; yellowish orange. Soft t stiff; high plasticity; moist.
●119/43 kPa - ♡ 3.0- -		A.	0/02/2019				● 34/32 kPa		-	- - - 2.5 - -			VSt		CLAY, with minor silt; yellowish orange. Very stiff; high plasticity; moist.
			10				● 119/43 kPa		-						2.7m: Effective refusal
									35	- 3.0 - - - -					
									-	- - - - 3.5-					
									-	-					
COMMENTS: Shear Vane #132 - 19mm blade. Effective refusal at 2.7m, hole started collapsing/squeezing		· Vane ;	#13	2 -	19n	nm blade. Effective refusal at	2.7m, hole star	rted	collap	- sing/s	squeezi	ng			

HOLE Id: HA3B-6

CO-ORDINATES: WGS84 R.L.: DATUM:	174.66 -36.58	746	8070		DRIL	L TY	PE: {		hand au		water	HOI DRI	JOB No.: 21854.0031 - 2018 LE STARTED: 20/02/2019 LE FINISHED: 20/02/2019 LLED BY: T+T GGED BY: JASM CHECKED: OP
EOLOGICAL													GINEERING DESCRIPTION
Seological UNIT, Seneric Name, Origin, Material Composition.	WATER	CORE RECOVERY (%)	METHOD	SCALA PENETROMETER (Blowd 100mm)	TESTS	SAMPLES	KL (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE WEATHERING	STRENGTH/DENSITY CLASSIFICATION	10 28 SHEAR STRENGTH 50 (kPa) 200	Description and Additional Observations
					●>214 kPa		-	-	≝ TS ≝ TS ≝ ≝ ≝ 32	М	Н		Topsoil. SILT, with some clay, with minor sand; orang yellow. Hard; low plasticity; dry to moist; sand
					 SS Sample 0.4m >214 kPa 		-	0.5-					fine.
					● 211/34 kPa SS Sample @ 0.9m		37	1.0 ⁻			St	-	Silty CLAY; pinkish grey. Stiff; high plasticity;
		100	НА		● 86/34 kPa ● 80/37 kPa		-	- - - - - - - - - - - - - - - - - - -	× × × × ×				moist.
					● 67/28 kPa		36		× × × × × ×				
					● 86/37 kPa		-	-	× × × ×		VSt		Silty CLAY; pinkish grey. Very stiff; high
	DRY 20/02/2019				● 113/61 kPa ● 135/67 kPa		-	2.5-	× × × ×				plasticity; moist; ER - hole collapsing and squeezing from ~1.9 2.7m: Effective refusal
								3.0-					2.7m. Enecuve relusal
OMMENTS: Shear	/ane #1	32 -	19m	ım blade			-	-					

HOLE Id: HA3B-7

PROJECT: Millwa CO-ORDINATES: WGS84	ater - Ai 174.66 -36.589	740	9062	2386					n Drive hand au		water		JOB No.: 21854.0031 - 2018 LE STARTED: 20/02/2019
R.L.: DATUM: GEOLOGICAL	-30.58	9994	4264	94621	DRI	LL M	ETHO	DD: H	IA			DRI LO(LE FINISHED: 20/02/2019 LLED BY: T+T GGED BY: JASM CHECKED: OP GINEERING DESCRIPTION
GEOLOGICAL UNIT,													
GENERIC NAME, ORIGIN, MATERIAL COMPOSITION.	WATER	CORE RECOVERY (%)	METHOD	SCALA PENETROMETER (Blow#150mm)	TESTS	SMIPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE CONDITION	STRENGTH/DENSITY CLASSIFICATION	10 26 50 100 (KPa) 200	Description and Additional Observations
							-	-	≗∾ 3 ⊵TS 346 - 8 346				Topsoil.
					● 122/37 kPa SS sample @ 0.4m ● 144/34 kPa		-	0.5-		D-M	VSt		SILT, with some clay and sand, with trace gra reddish orange. Very stiff; low plasticity; dry to moist; gravel, fine to medium.
					● 92/31 kPa		40	1.0-		М	St		Sandy SILT, with some clay; light red. Stiff; lo plasticity; moist.
					SS sample @ 0.9m ● 113/43 kPa		4	1.0 - -	к. * * 2 * * 2 * * 2				
					♥ 113/43 KPa		-	-	× × × × × ×		St-VSt		Clayey SILT; light orange. Stiff to very stiff; h plasticity; moist.
		100	ΗA		● 113/37 kPa		-	1.5-	× × × × × × × × × × × ×				
					● 95/34 kPa		39 -	- - - - 2.0-	× × × × × × × ×				
					● 144/55 kPa		- -	-	× ×× ×× ×× ×× ××				Clayey SILT; light grey. Stiff to very stiff; high plasticity; moist; 2-2.2m trace fine sands.
					● 168/70 kPa		-	2.5-	× × × × × × × × × ×				
	DRY 20/02/2019				● 95/37 kPa		-	-	· · · · · · · · · · · · · · · · · · ·				
	DR 20/				● 132/40 kPa		- 80	3.0 - -					3m: Target depth
							-	- - - 3.5-					
							-	- - -					
OMMENTS: Shear	Vane #13	32 -	19m	nm blade			-						

HOLE Id: HA3B-8

CO-ORDINATES: WGS84	174.66	696	s Hill Precinct 5 3815689 8896697		LOCAT					water		JOB No.: 21854.0031 - 2018 LE STARTED: 20/02/2019
R.L.: DATUM: GEOLOGICAL	-30.36	9910			DRILL N	1ETH(DD: H	IA			DRI LOC	LE FINISHED: 20/02/2019 ILLED BY: T+T GGED BY: MTAN CHECKED: OP GINEERING DESCRIPTION
GEOLOGICAL UNT, GENERIC NAME, ORIGIN, MATERIAL COMPOSITION	WATER	CORE RECOVERY (%)	SCALA PENET (Blows10 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	XOMETER TESTS	SAMPLES	RL (m)	DEPTH (m)	GRAPHICLOG	MOISTURE WEATHERING	STRENGTH/DENSITY CLASSIFICATION	10 25 50 100 (kPa) (kPa)	Description and Additional Observations Gravelly COBBLES. Topsoil.
				● 190/25 ki SS sam; @ 0.4m	ole	-	-		D	VSt		Gravelly SILT; gray. Very stiff; non-plastic; dry
				€ 138/90 k		-	0.5-		D-M			Clayey SILT; yellowish brown. Very stiff; low plasticity; dry to moist.
				● >214 kPa SS samp @ 0.9m	ple	37	1.0 ⁻		D	Н		SILT, with some clay; yellowish brown. Hard; non-plastic.
		100	¥	● 118/46 ki		-	-	*	М	VSt		Silty CLAY; yellowish brown. Very stiff; low plasticity; moist.
		10	I	● 113/40 ki ● 135/46 ki		-	1.5- - - - - -	× × × × ×				Clayey SILT; reddish grey. Very stiff; low plasticity; moist.
				● 161/54 ki	Pa		2.0-	**** **** **** **** **** ****				
				● 141/52 kl	Pa	-	2.5-					
	DRY 20/02/2019			● 153/58 kl		-	- - - - - -	× × ×				Silty CLAY; yellowish brown. Very stiff, low plasticity; moist.
				• 158/61 k	Pa		3.0					3m: Target depth

HOLE Id: HA3B-9

PROJECT: Millw									n Drive		water		JOB No.: 21854.0031 - 2018
CO-ORDINATES: WGS84 R.L.: DATUM:	174.66 -36.59			56759 166287				50mm DD: H	hand ai IA	ugers		HOI DRI	LE STARTED: 21/02/2019 LE FINISHED: 21/02/2019 ILLED BY: T+T GGED BY: MTAN CHECKED: OP
GEOLOGICAL													GINEERING DESCRIPTION
GEOLOGICAL UNT, GENERIC NAME, ORIGIN, MATERIAL COMPOSITION	WATER	CORE RECOVERY (%)	МЕТНОР	SCALA PENETROMETER (Bloww100mm) 0 1 2 3 4 5 6 7 8 9	TESTS	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE WEATHERING	STRENGTH/DENSITY CLASSIFICATION	10 26 50 100 (kPa) 200	Description and Additional Observations
					●>214 kPa SS sample @ 0.4m		-	-	≌ TS ≥ TS × × × × × × × × × ×	М	Н		Topsoil. SILT, with some clay, with minor sand; yellow brown. Hard; low plasticity; moist.
					● 165/21 kPa		-	0.5 - - - - -	× × ×		VSt-H		Silty CLAY; yellowish grey. Very stiff to hard; plasticity; moist.
					● UTP SS sample @ 0.9m		45	- - 1.0 -	* * * * * * * * * * * * * * *	D	Н		SILT, with minor sand; yellowish orange. Har non-plastic; dry.
		100	HA	c	● 184/35 kPa		-		× × × ×	Μ	VSt		Silty CLAY; greyish. Very stiff; low plasticity; moist.
		1			● 141/32 kPa ● UTP		-	1.5 - - - - -	× × × × × × ×	D	н		SILT, with some clay; greyish brown. Hard; n plastic; dry.
					• UTP		- 44	- - 2.0- - - -	× × × × × × × × × × × × × × × × × × ×	М			CLAY, with some silt; gray. Hard; high plastic moist.
					● >214 kPa		-	- - - 2.5 -	× × ×				
	DRY 21/02/2014	6107/70/			● UTP		-	-		D			SILT, with some sand; reddish brown. Hard; r plastic; dry.
	<u>3</u>	7											3m: Target depth
							-	-					
COMMENTS: Shear ole Depth	Vane #1	32 -	19r	mm blade									

HOLE Id: HA3B-10

PROJECT: Millw	ater - A	٨rra	ns	Hill Precinct 5	LOC	CAT	ION:	Arra	n Drive	e, Mill	water		JOB No.: 21854.0031 - 2018
CO-ORDINATES: WGS84	174.60 -36.59			87517 31873					hand au	ıger			LE STARTED: 21/02/2019 LE FINISHED: 21/02/2019
R.L.:					DRI	LL M	ETHO	DD: H	łA			DRI	ILLED BY: T+T
DATUM: GEOLOGICAL													GGED BY: MTAN CHECKED: OP GINEERING DESCRIPTION
													SINEERING DESCRIPTION
GENERIC NAME, ORIGIN, MATERIAL COMPOSITION.		1767			TESTS					WEATHERING	ž	SHEAR STRENGTH (KPa)	Description and Additional Observations
	×	CORF RECOVERY (%)	6	SCALA PENETROMETER (Blows/100mm)	12010	LES	6	DEPTH (m)	GRAPHIC LOG	MOISTURE CONDITION	STRENGTH/DENSITY CLASSIFICATION	SHEAR S' (kF	
	WATER	CORF				SAMPLES	RL (m)	DEPT	aw a ⊵TS	MOIS'	STRE	10 25 20 20 20 20 20 20 20 20 20 20 20 20 20	Topsoil.
							_		≗ 13 <u>30</u> - ≜ <u>30</u>				
					● 153/61 kPa		-	-	***	М	VSt		SILT, with minor clay, with trace sand; brownis orange. Very stiff; low plasticity; moist; sand, fine.
					SS sample @ 0.4m				***				III.C.
							-	0.5-	***				
					● 147/58 kPa		-	-	\bigotimes				
							-	-	× ×		VSt-H		Clayey SILT; blueish gray. Very stiff to hard; h
					● 113/40 kPa		4	1.0-	× × ·				plasticity; moist.
					SS sample @ 0.9m		44	1.0 -	<u> </u>				
					● 199/55 kPa		-	-	× 				
							-	-	× × · · ·				
		100		<u> </u>	●>214 kPa		-	1.5-	× ×		St		SILT, with some clay; light grey. Stiff; high
							-		***				plasticity; moist.
					● 92/11 kPa		-	-	× × × × × × × × × × × × × × × × × × ×		Н		Clayey SILT; yellowish grey. Hard; high
							-		× × ·				plasticity; moist; Limonite staining from 1.8-2.
					● UTP		- 43	2.0-	<u> </u>				
							-		* **				SILT, with some clay; dark grey. Hard; low plasticity; moist.
							-		^ × × × × × ×				
					● 202/52 kPa		_	2.5-	* × × × × × × ×				SILT, with some clay; light grey. Hard; high plasticity; moist.
							-	-	* * *				
		7			● 132/43 kPa		_	-	<u> </u>		VSt-H		Clayey SILT; orange brown. Very stiff to hard high plasticity; moist.
	DRY 21/02/2010	1/02/20/1					-		× × ×				
	¢	7			●UTP		42	3.0	× ×				3m: Target depth
							_						
							-	-					
							-						
							_	3.5-					
							_	-					
							-	-					
							-						
COMMENTS: Shear	Vane #1	132	- 19	mm blade									

HOLE Id: HA3B-11

ater - A	rran	s Hill	Precinct 5	LO	CATI	ON:	Arra	n Drive	e, Mill	water		JOB No.: 21854.0031 - 2018
									uger		HO	LE STARTED: 20/02/2019 LE FINISHED: 20/02/2019 LLED BY: T+T
												GGED BY: MTAN CHECKED: OP
											ENC	GINEERING DESCRIPTION
MTER	ORE RECOVERY (%)	ЕТНОD	SCALA PENETROMETER (Biows/100mm)	TESTS	MPLES	τ, (m)	EPTH (m)	RAPHIC LOG	OISTURE WEATHERING	TRENGTH/DENSITY LASSIFICATION	10 25 00 (KPa) 00 (KPa)	Description and Additional Observations
5	0	2			s	æ	-	36 3	20	so		TOPSOIL.
				● UTP SS sample @ 0.4m		-	- - - - - - - -		D	H VSt		Sandy SILT; reddish black. Hard; non-plastic; dry. SILT, with some sand; yellowish brown. Very stiff; non-plastic; dry.
				● 107/28 kPa		-						Sandy SILT, with minor gravel; reddish brown Very stiff; non-plastic; dry.
				● 132/31 kPa SS sample @ 0.9m		- 43	- 1.0 - - - -		M	St		Sandy SILT; yellowish brown. Very stiff; low plasticity; dry. Sandy SILT, with some clay; yellowish grey. S low plasticity; moist.
	100	Н		● 92/34 kPa		-	- - 1.5 - - -			St-VSt		Silty CLAY, with minor sand; yellowish brown Stiff to very stiff; low plasticity; moist.
				● 119/34 kPa		- 42	- - - 2.0 - -	× × × × × × × ×		VSt		Clayey SILT; reddish brown. Very stiff; low plasticity; moist.
				● 103/32 kPa		-	- - - - 2.5	× × × × ×		VSI-H		Silty CLAY, with minor gravel; greyish. Very s to hard; non-plastic; moist.
019				● >214 kPa		-	-	× × × ×		VSt		SILT, with some clay; brown . Very stiff; low
DRY 20/02/20				● 113/31 kPa		4	- 	× × × × × × × × × × × × × × × × × × ×				plasticity; moist.
						-	3.5-					3m: Target depth
	174.66 -36.59	174.66774 -36.590552	174.6677416563 -36.5905522077		174.667741656303 -36.5905522077542 DRI I	174.667741655303 -36.5905522077542 DRILL TY DRILL M 0 0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1	174.667741656303 -36.5905522077542 DRILL TYPE: 5 DRILL METHONETING Solutions 1 1 1 2 3 4 5 6 7 8 9 1<	174.667741656303 -36.5905522077542 DRILL TYPE: 50mm DRILL METHOD: H Image: State of the state	174.667741656303 -36.5905522077542 DRILL TYPE: 50mm hand at DRILL METHOD: HA Image: state of the state of t	174.667741656303 -36.5905522077542 DRILL TYPE: 50mm hand auger DRILL METHOD: HA Image: Space of the state o	174.667741656303 -38.5905522077542 DRILL TYPE: 50mm hand auger DRILL METHOD: HA Image: Standborg to the standborg	174.667741656303 -36.5905522077542 DRILL TYPE: 50mm hand auger DRILL METHOD: HA HO HO DRILL METHOD: HA 0 0 0 1 2 3 4 6 7 8 9 1213 1

HOLE Id: HA3B-12

PROJECT: Millwa										n Drive		water		JOB No.: 21854.0031 - 2018
CO-ORDINATES: WGS84				233025 259143						hand au	iger			LE STARTED: 25/02/2019 LE FINISHED: 25/02/2019
R.L.:						DRI	LL M	EIH	DD: H	IA				ILLED BY: T+T
														GGED BY: JASM CHECKED: OP GINEERING DESCRIPTION
									-					
GENERIC NAME, DRIGIN,											SING		HB	Description and
MATERIAL COMPOSITION.		(%) AB		SCALA PENETROMETER (Blows/100mm)		TESTS					WEATHERING	ASIT √	SHEAR STRENGTH (KPa)	Additional Observations
		CORF RECOVERY (%)					ES		(E)	GRAPHIC LOG		STRENGTH/DENSITY CLASSIFICATION	SHEAR	
	WATER	CORF		0 1 2 3 4 5 6 7	89		SAMPLES	RL (m)	DEPTH (m)		MOISTURE CONDITION	STREN	22 200 200 200	
								_		≗∾ s ⊵ TS				Topsoil.
								-		<u></u>				
						● 195/81 kPa		-	-	888	М	VSt-H		SILT, with some clay, with minor sand; reddis orange. Very stiff to hard; high plasticity; mois
						SS sample				***				sand, fine.
						@ 0.4m		Ļ	0.5-	***				
						● 146/57 kPa		Ļ		***				
						- 140/37 Ki a		-		***				
								-	-	\otimes				
						● 182/65 kPa				\bigotimes		VSt		SILT with some alow with trace groups and
						SS sample		- 43	1.0-	\otimes		vət		SILT, with some clay, with trace gravel; reddi orange. Very stiff; low plasticity; moist; gravel
						@ 0.9m		L				St-VSt		coarse. Clayey SILT; light orange. Stiff to very stiff; hi
						● 106/46 kPa		-		<u> </u>		51-V51		plasticity; moist.
								-	-	***				
								-		<u> </u>				
		100		£				-	1.5-	× ×				
								-		<u> </u>				
						● 73/36 kPa		-		* *				
								-	-	<u> </u>				
								-		× ×		1/04		
								- 54	2.0-	* *		VSt		SILT, with some clay, with minor sand; light g Very stiff; low plasticity; moist; sand, fine.
						● 98/33 kPa		-		× × × ×				
								-		* *				
								-	-	× × ×				
								-		<u></u>		St-VSt		
								-	2.5-	***		31-V31		SILT, with some clay, with minor sand; greyis green. Stiff to very stiff; high plasticity; moist;
						● 72/36 kPa		-		× × ×				sand, fine.
								-		***				
	6	0						-	-	× × × ×				
	DRY 25/02/2019	07/70						-		* *				
	DF 25	4	+			● 133/36 kPa	-	4	3.0	XX				3m: Target depth
								-						
								-	-					
								-						
								-						
								-	3.5-					
								-						
								-	-					
								-						
								-						
OMMENTS: Shear	Vane #6	60	- 19	9mm blade			L	L						<u> </u>
e Depth														

HOLE Id: HA3B-13

SHEET: 1 OF 1

				ill Precinct 5					n Drive		water		JOB No.: 21854.0031 - 2018
	174.66 -36.590								hand au	iger			LE STARTED: 25/02/2019 LE FINISHED: 25/02/2019
R.L.:					DRI	LL MI	EIHC	DD: H	IA				
													GGED BY: SIKA CHECKED: OP
GEOLOGICAL UNIT,													
GENERIC NAME, DRIGIN,										ERING		NGTH	Description and
MATERIAL COMPOSITION.		/ERY (%)		SCALA PENETROMETER (Blows/100mm)	TESTS					WEATHERING	ENSITY ION	SHEAR STRENGTH (KPa)	Additional Observations
	ER	CORE RECOVERY (%)	METHOD			SAMPLES	Ê	DEPTH (m)	GRAPHIC LOG		STRENGTH/DENSITY CLASSIFICATION		
	WATER	COR	MET	0 1 2 3 4 5 6 7 8 9		SAM	RL (m)		$\Delta b = \Delta$	MOIS	STR	20 20 20 20 20 20 20 20 20 20 20 20 20 2	Topsoil.
							-		≦TS] ≜≜				торзоп.
							-	-		М	Н		Clayey SILT, with minor sand; reddish orange
					● >228 kPa		-	-	>>>				Hard; low plasticity; moist; sand, fine.
					SS sample @ 0.4m		-	-	>>>				
					e tim		-	0.5-	***				
					●>228 kPa		-	-	***				
							-	-	\otimes				
							-	-	\otimes				
					● 195/88 kPa		_ 0	1.0-	\boxtimes				
					SS sample @ 0.9m		40	-	\otimes				
					●>228 kPa		-	-	\otimes				
					- 7220 Ki a		-	-	>>>				
							-	-	\bigotimes				
		100	Η		● UTP		_	1.5-	\bigotimes				
							-	-	***				
							-	-	\otimes				
					● UTP		-	-	\bigotimes				
							-	-	\boxtimes				
							39 -	2.0-	\otimes				
					● >228 kPa		-	-	\otimes				
							-	-	\bigotimes				
							-	-	\bigotimes				
					● UTP		-	-	\bigotimes				
							_	2.5-	\otimes				
					● 159/91 kPa		-	-	\bigotimes				
	5				- 155/51 Ki a		-	-	<u> </u>		VSt		Clayey SILT; light orange. Very stiff; low plasticity; moist.
	DRY 25/02/2019						-	-	× × ×				
	DR 25	-			● 146/75 kPa		38-	3.0	×*×				3m: Target depth
							-	-					Sin raiger deput
							-	-					
							-	-					
							-	-					
							_	3.5-					
							_	-					
							_	-					
							-	-					
								-					
OMMENTS:													

HOLE Id: HA3B-14

													water		JOB No.: 21854.0031 - 2018
CO-ORDINATES: WGS84	174.6 -36.5				61235						hand au	lger			LE STARTED: 25/02/2019 LE FINISHED: 25/02/2019
R.L.:							DRI	LL M	ETH	JD: F	IA				ILLED BY: T+T
															GGED BY: RLXB CHECKED: JASM GINEERING DESCRIPTION
GENERIC NAME, DRIGIN,												SNI		HLS	Description and
MATERIAL COMPOSITION.			RY (%)		SCALA PENETROMETER (Blows/100mm)		TESTS						4SIT √	SHEAR STRENGTH (KPa)	Additional Observations
		~	CORE RECOVERY (%)	9	(blows roomin)			ES		(E)	GRAPHIC LOG		STRENGTH/DENSITY CLASSIFICATION	SHEAF	
	ALL THE C	WATER	CORE	METHOD	0 1 2 3 4 5 6 7 8	9		SAMPLES	RL (m)	DEPTH (m)	-			86534 8	
									_		≗‴TS [⊴]	D	Н		Organic SILT; dark greyish brown. Hard; non- plastic; dry; silt, [TOPSOIL].
									_		<u> 36</u> - 6 <u>36</u>				
							01 kPa		_	-		М			CLAY, with some silt; light yellowish brown. Hard; low plasticity; moist; silt, [RESIDUAL
							S sample		ļ						ECBF SOIL].
						@	0.4m		L	0.5-					
							.01 kPa								
						•2	UINFa		-						
									_	-					
						• 12	6/75 kPa		ł						0.9m: Grades; very stiff.
									43	1.0 ⁻			VSt		
							6 sample 0.9m		ļ						
						• 16	1/80 kPa		-		×				
							nee n u		-	-	×				Silty CLAY; light reddish brown. Very stiff; hig plasticity; moist.
									-		× ×				
			100	Η		• 16	4/69 kPa		-	1.5-	×				
			-						-		× ×				
									-		×				
						• 14	9/72 kPa		-	-	×				
									-		×				Silty CLAY, with trace sand; dark reddish bro Very stiff; high plasticity; moist; sand, fine.
									42 -	2.0-	× ×				
						• 15	8/83 kPa		-		×				
									-		× ×				
									-	-	×				
						• 11	8/57 kPa		-		× ×				Silty CLAY; light reddish brown. Very stiff; hig
									-	2.5-	×				plasticity; moist.
									-		× <u> </u>				Clayey SILT, with trace sand; dark reddish
						• 18	1/57 kPa		-		×				brown. Very stiff; low plasticity; moist; sand, f
		019							-	-	× <u>++</u>		St		Silty CLAY; dark yellowish brown. Stiff; high
	RY	25/02/2019							-		*				plasticity; moist.
	<u> </u>	Ń				• 92	/43 kPa	-	4	3.0	×				3m: Target depth
									-						
									-	-					
									-						
									-						
									-	3.5-					
									F						
									F	-					
OMMENTS: Shear	Vane #	17	39 -	- 19	9mm blade								_		
ole Depth 3m															

HOLE Id: HA3B-15

PROJECT: Millwa									n Drive		water		JOB No.: 21854.0031 - 2018
CO-ORDINATES: WGS84	174.66 -36.590								hand au	uger			LE STARTED: 25/02/2019 LE FINISHED: 25/02/2019
R.L.:					DRI		EIH	DD: F	1A				
													GGED BY: MTAN CHECKED: OP GINEERING DESCRIPTION
SENERIC NAME, RIGIN,										SNG		GTH	Description and
NATERIAL COMPOSITION.		ERY (%)		SCALA PENETROMETER (Blows/100mm)	TESTS					WEATHERING	NSITY	SHEAR STRENGTH (KPa)	Additional Observations
	œ	CORE RECOVERY (%)	QO			LES	÷	(m) H	GRAPHIC LOG	MOISTURE	STRENGTH/DENSITY CLASSIFICATION	SHEA	
	WATER	CORE	METHOD	0 1 2 3 4 5 6 7 8 9		SAMPLES	RL (m)	DEPTH (m)		MOIST	STREI	22222 300222	
							-		<u>\$</u> "TS"	D	St-VSt		Topsoil.
							-		\otimes	D	31-131		Sandy SILT, with some gravel; gray. Stiff to ve stiff; non-plastic; dry.
					● 75/9 kPa		-		\boxtimes				
					SS sample		-		\bigotimes				
					@ 0.4m		-	0.5-	\boxtimes				
					● 139/66 kPa		-		\boxtimes				
							-		***	М	VSt		SILT, with minor clay; yellowish brown. Very s
							-		\otimes				low plasticity; moist.
					● 153/64 kPa		-		\bigotimes				
					SS sample		- 6	1.0-	\bigotimes				
					@ 0.9m		-	•	\otimes				
							-	-	***				
							-	•	***				
		0	4				-		***				
		100	ΗA		● 165/67 kPa		-	1.5-	\otimes				
							-		\otimes				
								-	\boxtimes	D			SILT, with trace sand; greyish yellow. Very sti non-plastic; dry.
					● UTP		_		\bigotimes				
							39 -	2.0-	\otimes				
					● 98/70 kPa		-		* * *	М	St-VSt		SILT, with some clay; yellowish brown, bands grey and red. Stiff to very stiff; low plasticity;
					- 30/70 Ki a		-	•	****				moist.
							-	-	* **				
					● 122/74 kPa		-		× × ×				
							-	2.5-	* * *				
							-		×^× × ×				
					● 122/83 kPa		-		* **				
	19						-	-	× × × × × × ×				
	DRY 25/02/2019						-		* **				
	<u>ж а</u>	\vdash			● 92/61 kPa		38	3.0	××				3m: Target depth
							-						
							ŀ	-					
							L						
							-	- -					
								3.5-					
								-					
							_						
	10no # 1	32 -	· 19r	nm blade									

HOLE Id: HA3B-16

PROJECT: Millw	ater - A	٩rr	ans	s Hi	ill Precinct 5	LO	CAT	ION	Arra	n Drive	e, Mill	water		JOB No.: 21854.0031 - 2018
CO-ORDINATES: WGS84 R.L.: DATUM: GEOLOGICAL	174.6 -36.59								50mm OD: H	hand a	uger		HO DRI LO(LE STARTED: 25/02/2019 LE FINISHED: 25/02/2019 ILLED BY: T+T GGED BY: RLXB CHECKED: JASM GINEERING DESCRIPTION
								1						SINEERING DESCRIPTION
GENERIC NAME. ORIGIN, MATERIAL COMPOSITION.	WATTER	WAIEK	CORE RECOVERY (%)	METHOD	SCALA PENETROMETER (Blowal footman)	TESTS	SMAPLES	RL (m)	DEPTH (m)	Staphic Los		L STRENGTH/DENSITY CLASSIFICATION	10 25 50 100 (KPa) 200	Description and Additional Observations
						● 144/46 kPa SS sample @ 0.4m		-	0.5-		М	VSt		Clayey SILT; dark yellowish brown. Very stiff; I plasticity; moist; silt, [ENGINEERED FILL]. Clayey SILT, with trace sand; light brown (mottled light pink). Very stiff; low plasticity; moist; sand, fine, [RESIDUAL ECBF SOIL].
						● 66/14 kPa		-		× × ×		St		Clayey SILT; dark yellowish brown. Stiff; low plasticity; moist.
						● 89/14 kPa SS sample @ 0.9m		40	1.0-					Clayey SILT; light brown (streaked dark yellowish brown). Stiff; low plasticity; moist.
			100	НА		● 101/29 kPa		-		× × × × × × × × × × × × × × × × × × ×		VSt		1.3m: Grades; very stiff.
						● 106/26 kPa		-	1.5-					
						● 101/20 kPa ● 103/14 kPa		39	2.0-					Sandy SILT, with minor clay; dark brownish g (mottled light brown). Very stiff; low plasticity; moist; sand, fine and medium.
						100,111,14		-		* * * * * * * * *				
	DRY	5/02/2019						-	2.5-		M / HW			Completely weathered; dark reddish brown; SANDSTONE; extremely weak; (tightly packe [CW ECBF].
		N												2.6m: Refusal
									3.0 -					
								-						
COMMENTS: Shear	Vane #	17	39	- 19	Amm blade		L	1						
2.6m														

HOLE Id: HA3B-17

174.66	787	040233	6	DRI	LL TY	PE:	50mm	hand au		water	HOI	JOB No.: 21854.0031 - 2018 LE STARTED: 20/02/2019 LE FINISHED: 20/02/2019 ILLED BY: T+T
								1			LOC	GGED BY: BEJO CHECKED: OP
	1										ENG	GINEERING DESCRIPTION
WATER	CORE RECOVERY (%)	METHOD	SCALA PENETROMETER (Blows100mm)	TESTS	SMIPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE WEATHERING	STRENGTH/DENSITY CLASSIFICATION	10 25 SHEAR STRENGTH 50 (kPa) 200 (kPa)	Description and Additional Observations
						-	-	ತಿಗಿ ತ ೬TS ೨೭ -				Topsoil.
				● >228 kPa SS sample @ 0.4m ● >228 kPa		-	0.5-		D-M	Н		Sandy SILT, with some clay, with trace grave light pinkish brown. Hard; low plasticity; dry to moist; sand, fine.
				●>228 kPa SS sample @ 0.9m ● UTP		- 40	1.0		M	VSt-H		Sandy SILT; yellowish orange. Very stiff to ha
	100	НА		● 208/50 kPa		-	1.5-					iow plasticity, moist, sand, line.
				● 179/41 kPa		39	2.0-					
						-	-	* × × × × × × × × × × × × × × × × × × ×		н		SILT, with some clay and sand; brownish yel Hard; low plasticity; moist.
				• UTP		-	2.5-	× × × × × × × × × × × × × × × × × × ×				
IRY 0/02/2019						-		X X X X X X X X X				Sandy SILT, with some clay; reddish brown. Hard; low plasticity; moist.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				●>228 kPa			3.5					3m: Target depth
	174.66 -36.590	174.66787( -36.5901113	174.66787040233 -36.590113951364	100 HA	174.667870402336 -36.5901139513641       DRI         Image: Construction of the second se	174.667870402336 -36.5901139513641       DRILL TY DRILL M         Image: Control of the second se	174.667870402336 -36.59011339513641       DRILL TYPE: 4 DRILL METHONETER         Image: Strategy of the stra	174.667870402336 -36.5901139513641       DRILL TYPE: 50mm DRILL METHOD: H         Image: state in the state	174.667870402336       DRILL TYPE: 50mm hand at DRILL METHOD: HA         1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 </td <td>174.667870402336 3.55.901139513641       DRILL TYPE: Some hand auger BRILL METHOD: HA         Image: Some hand auger BRILL METHOD:</td> <td>174.667870402336 -36.5901139513841       DRILL TYPE: 50mm hand auger: DRILL METHOD: HA         1       1       1       1       0       7       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       <t< td=""><td>1736.867870402336 -385.9901139513641     DRILL TYPE: 50mm hand auger DRILL METHOD: HA     HO HO DRILL METHOD: HA       1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1</td></t<></td>	174.667870402336 3.55.901139513641       DRILL TYPE: Some hand auger BRILL METHOD: HA         Image: Some hand auger BRILL METHOD:	174.667870402336 -36.5901139513841       DRILL TYPE: 50mm hand auger: DRILL METHOD: HA         1       1       1       1       0       7       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <t< td=""><td>1736.867870402336 -385.9901139513641     DRILL TYPE: 50mm hand auger DRILL METHOD: HA     HO HO DRILL METHOD: HA       1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1</td></t<>	1736.867870402336 -385.9901139513641     DRILL TYPE: 50mm hand auger DRILL METHOD: HA     HO HO DRILL METHOD: HA       1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1



HOLE Id: HA3B-18

PROJECT: Millwa	ater - A	rrar	ns Hi	ill Precinct 5	LOC	CAT	ION:	Arra	n Drive	e, Millv	water		JOB No.: 21854.0031 - 2018
CO-ORDINATES: WGS84	174.66 -36.58				DRIL	LL T	(PE: \$	50mm	hand au	ıger			LE STARTED: 27/02/2019
R.L.:	00.00	011	1000		DRI	LL M	IETHO	DD: H	łA				LE FINISHED: 27/02/2019 LLED BY: T+T
DATUM:												LOC	GGED BY: RLXB CHECKED: JASM
GEOLOGICAL												ENC	GINEERING DESCRIPTION
GEOLOGICAL UNIT, GENERIC NAME,										o		-	
ORIGIN, MATERIAL COMPOSITION.		(%)		SCALA PENETROMETER	TESTS					WEATHERING	È	TRENGT Pa)	Description and Additional Observations
		CORE RECOVERY (%)		(Blows/100mm)				Ê	9013	SN WE	STRENGTH/DENSITY CLASSIFICATION	SHEAR STRENGTH (KPa)	
	WATER	CORE RE	METHOD	0 1 2 3 4 5 6 7 8 9		SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE	STRENG	255 200 200 200 200	
								-	$\otimes$	М			Clayey SILT, with minor sand, with trace grave dark yellowish brown. Hard; low plasticity; moi
									$\otimes$				sand, fine.
							_	-	$\otimes$				
					● >214 kPa SS sample		ļ		>>>				
					@ 0.4m			0.5-	$\otimes$				
					●UTP			0.0	$\otimes$				
					UIP		-		>>>				
							-	-	>>>				
					●UTP		ł	•	>>>				
					SS sample		- 8	1.0-	$\otimes$				
					@ 0.9m		-		***				
					● 184/70 kPa		-		$\otimes$				
							-	-	$\otimes$				
							-		$\otimes$				
		100	Η		● 119/31 kPa		-	1.5-	***				
							-		$\otimes$				
							-		$\otimes$				
					● 159/89 kPa		-		<u>xx</u>		VSt		Silty CLAY; dark brownish yellow. Very stiff; h
							-		×				plasticity; moist.
							37	2.0-	××				
					●UTP		-		× ×				
							-	-	<u></u> .				Clayey SILT, with minor sand; dark reddish
							-		× ×				brown. Very stiff; low plasticity; moist; sand, fi
					● 122/61 kPa		-		<u> </u>				
							-	2.5-	× × ·				
							-		<u></u> .				
					● 141/58 kPa			-	<u>~</u> .				
	DRY 27/02/2019						_		<u> </u>				
	DRY 27/02	2			●>214 kPa		36	3.0-	× × ·				
							-						3m: Target depth
							-						
							-	-					
							-						
							-	3.5-					
							-						
							-	-					
							-						
							-						
OMMENTS: Shear	/ane # 1	132	- 19n	mm blade. Topsoil not placed	yet.	I	1						



HOLE Id: HA3B-19

PROJECT: Millw	ater - A	rran	s H	fill Precinct 5	LO	САТ	ION:	Arra	n Drive	e, Mill	water		JOB No.: 21854.0031 - 2018
CO-ORDINATES: WGS84 R.L.: DATUM:	174.66 -36.58						(PE: )		hand a IA	uger		HO DR	LE STARTED: 27/02/2019 LE FINISHED: 27/02/2019 ILLED BY: T+T GGED BY: RLXB CHECKED: JASM
GEOLOGICAL													GINEERING DESCRIPTION
GEOLOGICAL UNIT, GENERIC NAME, ORIGIN, MATERIAL COMPOSITION.	WATER	CORE RECOVERY (%)	METHOD	SCALA PENETROMETER (Blowar100mm) 0 1 2 3 4 5 6 7 8 9	TESTS	SMIPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE WEATHERING	STRENGTH/DENSITY CLASSIFICATION	10 25 50 100 200 (kPa)	Description and Additional Observations
					● UTP SS sample @ 0.4m ● >214 kPa		-	0.5-		D	H		Clayey SILT; light brown. Hard; non-plastic; dry to moist; Lime stabilised. 0.3m: Grades to moist
					● UTP SS sample @ 0.9m		37	1.0-		М			Silty CLAY, with trace sand and gravel; dark brown yellow. Hard; low plasticity; moist; sand, fine, gravel, fine, Sandstone.
		100	НА		● 119/25 kPa ● 132/31 kPa		-	1.5-			VSt		With trace sand and gravel; dark brown yellow. Very stiff; moist; sand, fine, gravel, fine, Sandstone.
					● 165/74 kPa		-	- - - - -					
					●>214 kPa		- 30	2.0-			н		Clayey SILT, with trace sand and gravel; dark yellow brown. Hard; low plasticity; moist; sand, fine, gravel, fine, Sandstone.
					● >214 kPa ● >214 kPa		-	2.5-					
	DRY 27/02/2019				• UTP		32	3.0					3m: Target depth
							-	3.5-					
COMMENTS: Shear	Vane #1	32 -	19m	nm blade. Topsoil not placed y	/et.								R



HOLE Id: HA3B-20

PROJECT: Millw	ater - A	rran	s H	fill Precinct 5	LO	САТ	ION:	Arra	n Drive	e, Mill	water		JOB No.: 21854.0031 - 2018
CO-ORDINATES: WGS84 R.L.: DATUM:	174.66 -36.58						(PE:		hand a IA	uger		HO DR LO(	LE STARTED: 07/03/2019 LE FINISHED: 07/03/2019 ILLED BY: T+T GGED BY: MTAN CHECKED: OP
GEOLOGICAL		_		1					ļ,			ENG	GINEERING DESCRIPTION
GERLOGIAL UNT, GENERIC NAME, ORIEN, MATERIAL COMPOSITION	WATER	CORE RECOVERY (%)	метнор	SCALA PENETROMETER (Blows/100mm)	TESTS	SMAPLES	- KL (m)	DEPTH (m)		MOISTURE WEATHERING	STRENGTH/DENSITY CLASSIF/CATION	10 25 50 SHEAR STRENGTH 100 (kPa) 200	Description and Additional Observations
					● >214 kPa SS sample @ 0.4m		-	0.5		D	н		Sandy SILT; brownish yellow. Hard; non-plast dry. SILT, with some sand, with minor gravel; greyi
					● UTP ● UTP		-	-					brown. Hard; non-plastic; dry; gravel, fine.
					SS sample @ 0.9m • UTP		35	1.0-					Sandy SILT, with trace gravel; gray. Hard; nor plastic; dry; sand, fine; gravel, fine.
		100	HA		● >214 kPa ● >214 kPa		-	1.5-			VSt		Clayey SILT, with trace sand; brownish yellov Very stiff; non-plastic; dry; sand, fine.
					● 153/74 kPa		- 34	2.0		D-M			Sandy SILT, with minor gravel; brownish yello Very stiff; non-plastic; dry; gravel, fine.
					● 136/63 kPa		-	2.5-		D-IVI			Clayey SILT, with trace gravel; brownish yello Very stiff; low plasticity; dry to moist; gravel, fi to medium.
	DRY 07/03/2019				• UTP		33	- - - 			н		Clayey SILT, with some sand, with trace grave Hard; low plasticity; dry to moist; sand, fine to medium; gravel, fine to medium. 3m: Target depth
							-	3.5-					
COMMENTS: Shear Hole Depth 3m Scale 1:20	Vane 13	2 - 1	9mr	m blade			-	-	-				



HOLE Id: HA3B-21

PROJECT: Millw	ater - A	rrar	is H	lill Precinct 5	LOC	CATI	ON:	Arra	n Drive	e, Millv	water		JOB No.: 21854.0031 - 2018
CO-ORDINATES: WGS84	174.67 -36.58				DRIL	L TY	PE: \$	50mm	hand au	uger			LE STARTED: 07/03/2019 LE FINISHED: 07/03/2019
R.L.:					DRII	LL M	ETHO	DD: H	ΗA				ILLED BY: T+T
													GGED BY: JASM CHECKED: OP
												ENC	GINEERING DESCRIPTION
GENERIC NAME, ORIGIN, MATERIAL COMPOSITION.	WATER	CORE RECOVERY (%)	метнор	SCALA PENETROMETER (Blows100mm) 0 1 2 3 4 5 6 7 8 9	TESTS	SMIPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE WEATHERING	STRENGTH/DENSITY CLASSIFICATION	10 25 50 SHEAR STRENGTH 100 (kPa) 200	Description and Additional Observations
							-		≗^ 3 ⊵ TS 346 - 8 346				Topsoil.
					<ul> <li>169/65 kPa</li> <li>SS sample</li> <li>0.4m</li> <li>153/46 kPa</li> </ul>		-	0.5-		М	VSt		SILT, with some clay, with trace sand and grav greyish orange. Very stiff; low plasticity; moist; gravel, fine to medium.
					● 104/36 kPa SS sample @ 0.9m		35	1.0-					Clayey SILT, with trace sand; light orangish gr Very stiff; low plasticity; moist; sand, fine.
		100	HA		● 114/33 kPa		-	1.5-					
					● 117/49 kPa ● 130/46 kPa		34	2.0-					SILT, with some clay, with minor sand; light orange. Very stiff; low plasticity; moist; sand,
					● 143/49 kPa		-	2.5	× × × × × × × × × × × × × × × × × ×				fine.
	DRY 07/03/2019				● 163/88 kPa		8	-	× × × × × × × × × × × × × × × × × × ×				
					● 150/91 kPa			3.5-					3m: Target depth

0
GEOTECHNICS

 Earth Works
 T&T Job #:
 21854.0031
 Entered By:

 NZS 4407:1991 Field water content and field dry density using a nuclear densometer
 Checked By:

Test 4.2.1 Direct Transmission Mode

URN	Easting	Northing	RL	Location	Tech.	Date	Nuclear Wet Density (t/m ³ )	Oven Dry Density (t/m3)	Oven Moisture content (%)	Solid Density (t/m3) assumed	(t/m3) Calculated			ength (kP le to pene		Average Shear Strength (kPa)	Re - Test (Y)	pass / fail Specification > 140 kPa and < 10 % Air Voids)
												Test 1	Test 2	Test 3	Test 4			
S16 177-1	2659626.089	6510994.821	39.89	Above undercut 3	ТА	1/12/2016	1.82	1.35	34.9	2.7	2.8	214	214	214	214	214		Р
0101111	20000201000	00100011021	00.00				1.82	1.35	34.9	2.7	2.9							
S16 177-2	2659613.278	6510997.996	39.948	Above undercut 3	ТА	1/12/2016	1.84	1.40	31.4	2.7	4.2	214	214	214	214	214		Р
							1.83	1.39	31.4	2.7	4.6							ļ
S16 177-3	2659593.744	6511003.862	39.288	Above undercut 3	ТА	1/12/2016	1.84	1.39	32.0	2.7	3.8	214	214	214	214	214		Р
					_		1.83	1.38	32.0	2.7	4.5							
S16 177-6	2659594.418	6511015.942	39.748	Above undercut 3	ТА	1/12/2016	1.84	1.36	34.9	2.7	2.1	214	214	214	214	214		Р
							1.84	1.36	34.9	2.7	1.9							l
S16 177-7	2659627.513	6511012.738	41.342	Above undercut 3	ТА	1/12/2016	1.84	1.41	30.4	2.7	4.7	214	214	214	214	214		Р
					-		1.84	1.41	30.4	2.7	5.0							ł
S16 178-1	2659625.535	6510968.17	34.345	Undercut 3	ТА	2/12/2016	1.83	1.39	31.7	2.7	4.3	214	214	214	214	214		Р
					-		1.83	1.39	31.7	2.7	4.4							
S16 178-2	2659606.822	6510972.121	34.269	Undercut 3	ТА	2/12/2016	1.82	1.36	33.7	2.7	3.9	214	214	214	214	214		Р
							1.79	1.34	33.7	2.7	5.4							
S16 178-3	2659630.385	6510966.774	34.846	Undercut 3	ТА	2/12/2016	1.86	1.42	30.7	2.7	3.8	162	214	183	199	190		Р
					-		1.86	1.42	30.7	2.7	3.5							ł
S16 178-4	2659598.298	6510974.821	35.377	Undercut 3	TA	2/12/2016	1.89	1.44	30.9	2.7	1.9	177	183	183	199	186		Р
							1.89	1.44	30.9 37.4	2.7	2.2							
S16 179-1	2659632.483	6510983.92	39.607	Above undercut 3	ТА	5/12/2016	1.82	1.32	37.4	2.7	1.6 1.5	214	214	214	214	214		Р
							1.82	1.32	37.4	2.7	1.0							
S16 179-2	2659630.416	6511008.305	41.9	Above undercut 3	TA	5/12/2016	1.81	1.31	38.3	2.7	1.0	214	214	214	214	214		Р
							1.87	1.40	32.8	2.7	1.9							
S16 179-7	2659609.777	6511013.615	42.595	Above undercut 3	TA	5/12/2016	1.82	1.37	32.8	2.7	4.1	174	214	214	199	200		Р
							1.84	1.40	31.9	2.7	3.7							_
S16 179-8	2659626.779	6510987.35	40.348	Above undercut 3	TA	5/12/2016	1.85	1.40	31.9	2.7	3.3	214	214	199	199	207		Р
040 400 0	0050000.074	0511000.00	40.004	Alterna verdaren d. O	<b>T</b> 4	0/40/0040	1.81	1.34	34.8	2.7	3.4		044					
S16 180-3	2659630.874	6511000.02	42.061	Above undercut 3	ТА	6/12/2016	1.83	1.36	34.8	2.7	2.5	214	214	214	214	214		Р
S16 180-4	2659601.818	6511024.579	42.605	Above undercut 3	ТА	6/12/2016	1.79	1.34	34.1	2.7	4.9	214	214	214	214	214		Р
510100-4	2039001.010	0511024.575	42.005	Above undercut 5	14	0/12/2010	1.80	1.34	34.1	2.7	4.5	214	214	214	214	214		'
S16 181-1	2659639.146	6510990.275	40.808	Above undercut 3	ТА	7/12/2016	1.81	1.35	33.8	2.7	4.3	156	214	214	199	196		Р
0101011	2003003.140	3010030.210	40.000		17.	1/12/2010	1.79	1.34	33.8	2.7	5.1	100	217	217	100	100		· ·
S16 181-2	2659615.421	6511020.264	43.567	Above undercut 3	ТА	7/12/2016	1.80	1.36	32.5	2.7	5.7	196	208	214	214	208		Р
0.0.0.2	20000101121	30110201204	101001				1.80	1.36	32.5	2.7	5.7							· .
S16 181-9	2659599.704	6511009.075	42.362	Above undercut 3	ТА	7/12/2016	1.81	1.36	33.6	2.7	4.3	214	214	214	214	214		Р
							1.82	1.37	33.6	2.7	3.6							<u> </u>
S16 181-10	2659637.367	6510991.975	41.219	Above undercut 3	ТА	7/12/2016	1.81	1.37	32.3	2.7	4.9	214	214	214	214	214		Р
			-				1.82	1.38	32.3	2.7	4.5							<b></b>
S16 181-11	2659525.649	6510951.412	19.258	South Gully	ТА	7/12/2016	1.81	1.39	29.7	2.7	6.9	214	214	214	214	214		Р
							1.82	1.40	29.7	2.7	6.4							l

6
GEOTECHNICS

 Earth Works
 T&T Job #:
 21854.0031
 Entered By:

 NZS 4407:1991 Field water content and field dry density using a nuclear densometer
 Checked By:

NZS 4407:1991 Field water content and field dry Test 4.2.1 Direct Transmission Mode

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	URN	Easting	Northing	RL	Location	Tech.	Date	Nuclear Wet Density (t/m ³ )	Oven Dry Density (t/m3)	Oven Moisture content (%)	Solid Density (t/m3) assumed	Oven Calculated Air Voids (%)		Shear Strength (kPa) (UTP = Unable to penetrate)			Average Shear Strength (kPa)	Re - Test (Y)	pass / fail Specification > 140 kPa and < 10 % Air Voids)
Stinisch         Jacoms         Distant         Auszunger         11         155         255         27         4.2         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74         74 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Test 1</th><th>Test 2</th><th>Test 3</th><th>Test 4</th><th></th><th></th><th>ļ!</th></t<>													Test 1	Test 2	Test 3	Test 4			ļ!
S161641         265869.161         601987.557         S753         Above unlexed3         TA         1/212016         1/87         1/40         306         2.7         3.2         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4         2/4        2/4	S16 182-1	2659868.397	6511101.295	26.311	North Gully	ТА	9/12/2016						214	214	214	214	214		Р
1000000000000000000000000000000000000	646 494 4	2050090.450	6540097 357	27.52	About undersuit 2	тл	10/10/0010						214	014	214	214	24.4		
She files         Zesting and the second and the	516 164-1	2039009.150	0510987.357	37.53	Above undercut 3	IA	12/12/2016	1.87	1.43	30.6	2.7	3.0	214	214	214	214	214		r
She 10-1       26806 478       66 1100.202       42.602       Akove undered 3       TA       2012006       1.40       1.42       322       2.7       1.4       1.6       1.6       1.7       2.0       17       2.0       17       2.0       17       2.0       17       2.0       17       2.0       17       2.0       17       2.0       17       2.0       17       2.0       17       2.0       17       2.0       17       2.0       17       2.0       17       2.0       17       2.0       17       2.0       17       2.0       17       2.0       17       2.0       17       2.0       17       2.0       17       1.4       130       312       2.7       5.4       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0 <th2.0< th="">       2.0       2.0</th2.0<>	S16 184-6	2659702.296	6510990.594	37.716	Above S Gully	ТА	12/12/2016						214	214	214	214	214		Р
S 10 10.21         200807.05         0 11 00.002         4.0040 4004003         1A $\Delta D 2 2 0 10$ 137         142         322         27         19         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10																			l
Sti 1922       265911 300       6511027 552       43.300       Above urdenal 3       TA       2912010       1.81       1.93       9.17       2.7       5.4       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6       2.6 <t< td=""><td>S16 192-1</td><td>2659636.765</td><td>6511030.202</td><td>42.692</td><td>Above undercut 3</td><td>TA</td><td>20/12/2016</td><td></td><td></td><td></td><td></td><td></td><td>168</td><td>141</td><td>176</td><td>206</td><td>173</td><td></td><td>Р</td></t<>	S16 192-1	2659636.765	6511030.202	42.692	Above undercut 3	TA	20/12/2016						168	141	176	206	173		Р
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	S16 192-2	2659611 809	6511027 552	43 309	Above undercut 3	тΔ	20/12/2016			31.7	2.7	5.4	214	214	214	214	214		Р
In thread         Description         All of a line for an and a line for a line line for a line for a line line line for a line for a	0101022	2003011.003	0011027.002	40.000			20/12/2010	1.81	1.38	31.7	2.7	5.3	214	214	214	214	214		<u> </u>
Site 192-4       2656962.318       6511005.388       41.154       Above underord 3       TA       201/2016       1.84       1.41       293       2.7       5.4       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14       2.14 <th2.14< th="">       2.14       2.</th2.14<>	S16 192-3	2659669.966	6511011.402	41.174	Above undercut 3	ТА	20/12/2016						214	214	214	214	214		Р
Shifted 2       Destriction definition of the definition of t																			
S16 192-9       265666.469       651107.865       44.588       Above undered 3       TA       2012/2016       1.75       1.34       30.3       2.7       9.6       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21 <t< td=""><td>S16 192-8</td><td>2659692.318</td><td>6511005.368</td><td>41.154</td><td>Above undercut 3</td><td>TA</td><td>20/12/2016</td><td></td><td></td><td></td><td></td><td>1</td><td>214</td><td>214</td><td>214</td><td>214</td><td>214</td><td></td><td>Р</td></t<>	S16 192-8	2659692.318	6511005.368	41.154	Above undercut 3	TA	20/12/2016					1	214	214	214	214	214		Р
Image: book of the state of the s	S16 102 0	2650656 460	6511017 965	44 699	Abovo undorout 2	тл	20/12/2016						214	214	214	214	214		в
Sh 192-10         2094825.103         6511033.75         244.99         Above undered 3         TA         201/2/016         1.84         1.40         31.4         2.7         4.1         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214 </td <td>516 192-9</td> <td>2039030.409</td> <td>0511017.805</td> <td>44.300</td> <td>Above undercut 3</td> <td>IA</td> <td>20/12/2016</td> <td>1.77</td> <td>1.36</td> <td>30.3</td> <td>2.7</td> <td>8.6</td> <td>214</td> <td>214</td> <td>214</td> <td>214</td> <td>214</td> <td></td> <td>F</td>	516 192-9	2039030.409	0511017.805	44.300	Above undercut 3	IA	20/12/2016	1.77	1.36	30.3	2.7	8.6	214	214	214	214	214		F
S16 193-5       2656969.547       651102.899       41.028       Above underout 3       TA       21/12/2016       1.85       1.39       33.9       2.7       2.2       1.7       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21	S16 192-10	2659625.103	6511033.75	44.69	Above undercut 3	ТА	20/12/2016						214	214	214	214	214		Р
Sib 193-5         2600699.94/t         651101/2.689         41.028         Above undered.3         IA         21/1/2/2016         1.86         1.39         33.9         2.7         1.7         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214																			
S16 193-6       2659652.437       6511024.84       43.778       Above undercut 3       TA       21/12/2016       1.78       1.34       32.5       2.7       6.6       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214	S16 193-5	2659699.547	6511012.899	41.028	Above undercut 3	TA	21/12/2016					1	214	191	214	214	208		Р
$$ $$ $$ $$ $$ $$ $$ $$ $$ $  $	040.400.0	0050050 407	0544004.004	40.770	About underside	тл	04/40/0040								014				
S16 193-7       2659628.417       6511040.4       44.839       Above undered: 3       IA       21/12/2016       1.87       1.39       34.1       2.7       1.0       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214	510 193-0	2039052.437	0511024.884	43.778	Above undercut 3	IA	21/12/2016	1.79	1.35	32.5	2.7	6.0	214	214	214	214	214		P .
S16 194.1       2659670.539 $6511024.77$ $44.428$ Above undercu 3       TA $22/12/2016$ $1.83$ $1.33$ $37.5$ $2.7$ $1.0$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ $21$ </td <td>S16 193-7</td> <td>2659628.417</td> <td>6511040.4</td> <td>44.839</td> <td>Above undercut 3</td> <td>ТА</td> <td>21/12/2016</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>214</td> <td>214</td> <td>214</td> <td>214</td> <td>214</td> <td></td> <td>Р</td>	S16 193-7	2659628.417	6511040.4	44.839	Above undercut 3	ТА	21/12/2016						214	214	214	214	214		Р
Sh 194-1       265967/03.39       6511024.77       44.428       Above undercut 3       TA       22/12/2016       1.83       1.33       37.5       2.7       0.8       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214											1	1							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	S16 194-1	2659670.539	6511024.77	44.428	Above undercut 3	TA	22/12/2016					1	214	214	214	214	214		Р
S16 194-2       2639623.039       051 1040.933       44.161       Addre ulderdat 3       1A       22/12/2016       1.88       1.45       29.6       2.7       3.3       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214	0.0.00		0544040.000				00/10/00 10												
S16 194-3       2659630.979       6511020.987       42.98       Above undercut 3       TA       22/12/2016       1.90       1.51       26.1       2.7       4.9       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214	S16 194-2	2659623.309	6511040.993	44.161	Above undercut 3	IA	22/12/2016				1	1	214	214	214	214	214		Р
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	S16 194-3	2659630.979	6511020.987	42.98	Above undercut 3	ТА	22/12/2016						214	214	214	214	214		Р
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																			l
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	S17 012-8	2659638.559	6511032.3	44.728	Fill above S Gully	PO	20/01/2017						214	214	214	214	214		Р
S17 012-30       2659609.92       651102.1099       43.425       Pill above S Gully       PO       20/01/2017       1.92       1.45       32.6       2.7       0.0       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214	047.040.0	0050000.00	0511001.000	40.405	Fill shours 0. Out		00/04/00/7							014	014				
S17 012-10       2659629.51       6511002.239       43.726       Fill above S Gully       PO       20/01/2017       1.95       1.54       26.1       2.7       2.6       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214	517 012-9	2659680.92	6511021.099	43.425	Fill above S Gully	90	20/01/2017				1		214	214	214	214	214		Р
S17 021-7       2659604.344       6511045.758       45.195       Fill above S Gully       CB       2/02/2017       1.89       1.47       27.9       2.7       4.2       199       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214	S17 012-10	2659629.51	6511002.239	43.726	Fill above S Gully	PO	20/01/2017						214	214	214	214	214		Р
S17 021-7       2659604.344       6511045.758       45.195       Fill above S Gully       CB       202/2017       1.89       1.48       27.9       2.7       4.2       199       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214																$\left  - \right $			
S17 021-8       2659609.499       6511040.385       45.33       Fill above S Gully       CB       2/02/2017       1.86       1.40       32.2       2.7       2.8       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214       214	S17 021-7	2659604.344	6511045.758	45.195	Fill above S Gully	СВ	2/02/2017						199	214	214	214	210		Р
Image: Note of the system     I	S17 021-8	2659641.917	6511040.385	45.33	Fill above S Gullv	СВ	2/02/2017	1.86	1.41	32.2	2.7	2.6	214	214	214	214	214		Р
S17 U21-9 2659609.499 6511015.616 44.879 Fill above S Gully CB 2/02/2017 183 214 214 214 214 214 206 P																			<u> </u>
	S17 021-9	2659609.499	6511015.616	44.879	Fill above S Gully	СВ	2/02/2017	1.80 1.81	1.32	36.1 36.1	2.7	3.1 2.8	183	214	214	214	206		Р

0
GEOTECHNICS

Earth Works	T&T Job #:	21854.0031	Entered By:
NZS 4407:1991 Field water content and field dry de	ensity using a nuclear densom	eter	Checked By:

Test 4.2.1 Direct Transmission Mode NZGS August 2001 Guidelines for hand held shear vane test.

	URN	Easting	Northing	RL	Location	Tech.	Date	Nuclear Wet Density (t/m ³ )	Oven Dry Density (t/m3)	Oven Moisture content (%)	Solid Density (t/m3) assumed	Oven Calculated Air Voids (%)		Shear Strength (kPa) (UTP = Unable to penetrate)			Average Shear Strength (kPa)	Re - Test (Y)	pass / fail Specification > 140 kPa and < 10 % Air Voids)
													Test 1	Test 2	Test 3	Test 4			
S17	7 021-10	2659593.001	6511022.119	44.239	Fill above S Gully	СВ	2/02/2017	1.89	1.51	25.1	2.7	6.0	214	214	214	214	214		Р
517	021-10	2039393.001	0511022.115	44.255	This above 5 Gully	CD	2/02/2017	1.89	1.51	25.1	2.7	6.2	214	214	214	214	214		
S1 ¹	7 039-7	2659614.62	6511020.841	45.384	Undercut 3	СМО	3/03/2017	1.90	1.49	27.7	2.7	3.7	137	168	176	183	166		Р
51	1 033-1	2035014.02	0511020.041	40.004	Undercut 3	CIVIO	5/05/2017	1.92	1.50	27.7	2.7	2.7	157	100	170	105	100		
S1 ⁻	7 039-8	2659626.547	6511006.959	45.157	Undercut 3	смо	3/03/2017	1.93	1.55	24.7	2.7	4.4	122	84	98	95	100		Р
0.1		20000201011	0011000.000	10.101	ondorodir o	00	0,00,2011	1.94	1.56	24.7	2.7	4.0		0.	00	00			
S1	7 039-9	2659602.986	6511054.743	46.179	Undercut 3	СМО	3/03/2017	1.86	1.50	24.4	2.7	8.1	214	214	214	214	214		Р
		2000002.000	00110011110	10.110	ondorodir o	00	0,00,2011	1.86	1.50	24.4	2.7	8.1	2	2	2	2			
S17	7 039-10	2659594.42	6511046.68	45.547	Undercut 3	СМО	3/03/2017	1.91	1.45	31.9	2.7	0.2	214	214	153	153	184		Р
								1.90	1.44	31.9	2.7	0.7							-
S1	7 165-4	2659708.416	6511158.484	18.574	Undercut 5	CBEN	7/12/2017	1.96	1.56	26.0	2.7	2.0	204	204	204	204	204		Р
						_		1.95	1.54	26.0	2.7	2.7							
S1	7 165-5	2659707.392	6511152.006	20.257	Undercut 5	CBEN	7/12/2017	1.95	1.56	25.5	2.7	2.8	204	204	204	204	204		Р
								1.96 1.87	1.56 1.50	25.5 24.9	2.7	2.3 7.2							
S17	7 165-11	2659707.618	6511153.077	21.865	Undercut 5	CBEN	7/12/2017	1.86	1.49	24.9	2.7	7.6	204	204	204	204	204		Р
		0050300 070	05///50 500			0051	7/10/00/17	1.85	1.46	26.8	2.7	6.7							_
517	7 165-12	2659709.678	6511152.569	23.229	Undercut 5	CBEN	7/12/2017	1.86	1.47	26.8	2.7	6.4	204	204	204	204	204		Р
S1	7 168-6	2659679.662	6511160.068	20.09	Undercut 5	CBEN	11/12/2017	1.78	1.36	31.5	2.7	7.1	204	204	204	204	204		Р
	. 100 0	20000101002	0011100.000	20.00	ondorodito	OBEIT	11/12/2011	1.78	1.36	31.5	2.7	7.0	201	201	201	201	201		
S1	7 168-7	2659675.894	6511155.882	21.082	Undercut 5	CBEN	11/12/2017	1.78	1.36	31.3	2.7	7.2	204	204	204	204	204		Р
						_		1.79	1.36	31.3	2.7	6.8							
S1	7 168-8	2659687.999	6511149.03	22.276	Undercut 5	CBEN	11/12/2017	1.78 1.79	1.37 1.37	30.4 30.4	2.7	7.7	204	204	204	204	204		Р
								1.85	1.42	30.4	2.7	4.3							_
S1	7 174-3	2659657.034	6511168.597	19.62	Gully 7	CBEN	19/12/2017	1.86	1.43	30.3	2.7	3.8	204	204	204	204	204		Р
S1 ¹	7 174-4	2659667.788	6511161.869	19.556	Gully 7	CBEN	19/12/2017	1.83	1.42	28.4	2.7	6.8	204	204	204	204	204		Р
51	/ 1/4-4	2039007.700	0511101.805	19.550	Gully 7	ODEN	13/12/2017	1.85	1.44	28.4	2.7	5.7	204	204	204	204	204		
S1	7 175-2	2659655.298	6511169.612	21.475	Gully 7	CBEN	20/12/2017	1.82	1.39	31.2	2.7	5.2	204	204	204	204	204		Р
						-		1.82	1.39	31.2	2.7	5.2							
S1	7 175-3	2659648.443	6511168.076	22.712	Gully 7	CBEN	20/12/2017	1.83 1.81	1.40 1.39	30.6 30.6	2.7 2.7	5.5 6.1	204	204	204	204	204		Р
								1.87	1.43	31.1	2.7	2.8							
S1	7 175-5	2659647.434	6511172.562	23.878	Gully 7	CBEN	20/12/2017	1.88	1.43	31.1	2.7	2.5	204	204	204	204	204		Р
04	7 175-6	2650660 706	6511159.02	21.768	Cully 7	CBEN	20/12/2017	1.87	1.40	33.1	2.7	1.6	204	204	204	204	204		Р
51	0-6111	2659660.706	6511158.92	21.700	Gully 7	CDEN	20/12/2017	1.88	1.41	33.1	2.7	0.8	204	204	204	204	204		r
S1	7 176-3	2659645.523	6511175.38	24.787	Gully 7	CBEN	21/12/2017	1.86	1.44	29.3	2.7	4.6	204	204	204	204	204		Р
				-	,			1.86	1.44	29.3	2.7	4.3	-		-		-		
S1	7 176-4	2659665.767	6511168.875	20.033	Gully 7	CBEN	21/12/2017	1.87	1.45	28.6	2.7	4.6	204	204	204	204	204		Р
						+		1.86 1.88	1.44 1.46	28.6 29.3	2.7	5.2 3.5				$\left  - \right $			
S1	7 176-7	2659665.207	6511157.372	24.433	Gully 7	CBEN	21/12/2017	1.88	1.46	29.3	2.7	3.5	204	204	204	204	204		Р
	7 470 0	0050010.007	0544470.00	05 700	0	00000	04/46/00/5	1.87	1.46	27.8	2.7	5.2	001		001	001			_
S1	7 176-8	2659642.637	6511176.03	25.726	Gully 7	CBEN	21/12/2017	1.87	1.46	27.8	2.7	5.2	204	204	204	204	204		Р

0
GEOTECHNICS

Earth Works	T&T Job #:	21854.0031	Entered By:
NZS 4407:1991 Field water content and field dry de	ensity using a nuclear densom	eter	Checked By:

Test 4.2.1 Direct Transmission Mode

URN	Easting	Northing	RL	Location	Tech.	Date	Nuclear Wet Density (t/m ³ )	Oven Dry Density (t/m3)	Oven Moisture content (%)	Solid Density (t/m3) assumed	Oven Calculated Air Voids (%)	(UTP	Shear Strength (kPa) (UTP = Unable to penetrate)			JTP = Unable to penetrate)		Average Shear Strength (kPa)	Re - Test (Y)	pass / fail Specification > 140 kPa and < 10 % Air Voids)
												Test 1	Test 2	Test 3	Test 4					
S17 177-3	2659655.802	6511157.437	24.801	Gully 7	CBEN	22/12/2017	1.88	1.47	28.2	2.7	4.1	204	204	204	204	204		Р		
							1.88 1.88	1.47 1.45	28.2 29.0	2.7 2.7	4.2							<b>├</b> ────┦		
S17 177-4	2659646.617	6511169.003	25.894	Gully 7	CBEN	22/12/2017	1.89	1.45	29.0	2.7	3.3	204	204	204	204	204		Р		
S18 002-5	2659690.191	6511145.884	23.486	Above Road 4	ELHO	9/01/2018	1.92	1.53	26.0	2.7	3.8	204	204	204	204	204		Р		
318 002-5	2039090.191	0511145.084	23.400	Above Road 4	ELHO	9/01/2018	1.92	1.52	26.0	2.7	4.2	204	204	204	204	204		F		
S18 002-9	2659670.738	6511167.455	18.327	Gully 7	ELHO	9/01/2018	1.78	1.35	32.0	2.7	6.9	204	204	204	204	204		Р		
							1.77 1.86	1.34 1.47	32.0 26.4	2.7 2.7	7.5 6.7	$\vdash$								
S18 003-5	2659683.879	6511160.759	17.468	Gully 2	ELHO	10/01/2018	1.86	1.47	26.4	2.7	6.6	204	204	204	204	204		Р		
S18 004-6	2659687.451	6511160.922	16.49	Gully 7	ELHO	11/01/2018	1.89	1.48	28.2	2.7	3.6	204	204	204	204	204		Р		
318 004-0	2039087.431	0511100.922	10.49	Guily 7	ELHO	11/01/2016	1.88	1.47	28.2	2.7	4.2	204	204	204	204	204		F		
S18 004-7	2659707.347	6511161.059	17.779	Gully 7	ELHO	11/01/2018	1.88	1.46	28.7	2.7	3.7	204	204	204	204	204		Р		
							1.90 1.82	1.47 1.39	28.7 31.6	2.7 2.7	3.1 4.9									
S18 005-3	2659692.759	6511158.508	18.432	Gully 7	ELHO	12/01/2018	1.81	1.39	31.6	2.7	5.4	204	204	204	204	204		Р		
S18 005-4	2659707.07	6511164.874	20.65	Gully 7	ELHO	12/01/2018	1.84	1.39	32.0	2.7	4.0	204	204	204	204	204		Р		
518 005-4	2659707.07	6511164.674	20.65	Guily 7	ELHO	12/01/2016	1.82	1.38	32.0	2.7	4.7	204	204	204	204	204		F		
S18 005-6	2659707.773	6511159.125	20.199	Gully 7	ELHO	12/01/2018	1.90	1.46	30.4	2.7	1.8	204	204	204	204	204		Р		
							1.90	1.46	30.4	2.7	1.6	$\vdash$								
S18 005-7	2659693.853	6511164.304	19.342	Gully 7	ELHO	12/01/2018	1.90 1.89	1.46 1.45	30.0 30.0	2.7 2.7	1.8 2.7	204	204	204	204	204		Р		
010.000.0	0050740.000	0544450 400	04.050	0.4.7	FLUG	45/04/0040	1.78	1.33	33.6	2.7	5.8	004	004	004	004			Р		
S18 006-3	2659710.866	6511159.163	21.352	Gully 7	ELHO	15/01/2018	1.79	1.34	33.6	2.7	5.2	204	204	204	204	204		Р		
S18 018-2	2659678.989	6511160.73	21.423	Fill Behind Wall 6	ELHO	31/01/2018	1.88	1.48	27.2	2.7	5.0	204	204	204	204	204		Р		
							1.87	1.47 1.48	27.2 27.4	2.7 2.7	5.3 4.7									
S18 018-3	2659791.036	6510927.748	22.135	Lots 143-148	ELHO	31/01/2018	1.88 1.88	1.48	27.4	2.7	4.7	204	204	204	204	204		Р		
040.040.4	0050070 007	0511150 100	00.004	Ell Dablad Mall O	FLUO	4/00/0040	1.90	1.53	23.9	2.7	6.7	004	004	004	004			Р		
S18 019-1	2659676.397	6511159.463	20.624	Fill Behind Wall 6	ELHO	1/02/2018	1.91	1.54	23.9	2.7	6.2	204	204	204	204	204		F		
S18 019-2	2659697.03	6511158.077	21.038	Fill Behind Wall 6	ELHO	1/02/2018	1.92	1.53	25.7	2.7	4.3	204	204	204	204	204		Р		
							1.91 1.81	1.52 1.34	25.7 35.5	2.7 2.7	4.9 3.0	$\vdash$						<u> </u>		
S18 047-4	2659709.607	6510952.24	30.647	Undercut 3	ELHO	19/03/2018	1.81	1.34	35.5	2.7	2.8	204	204	204	204	204		Р		
S18 048-2	2659671.341	6511156.637	23.274	RE Wall 7	ELHO	20/03/2018	1.82	1.35	34.6	2.7	3.4	204	204	204	204	204		Р		
510 U40-2	2039071.341	100.001	23.214	RE Wall /	ELHU	20/03/2018	1.80	1.34	34.6	2.7	4.0	204	204	204	204	204				
S18 048-3	2659697.605	6511156.471	23.69	RE Wall 7	ELHO	20/03/2018	1.79	1.33	34.5	2.7	4.8	204	204	204	204	204		Р		
├							1.80 1.81	1.34 1.34	34.5 34.7	2.7 2.7	4.3 3.6	┢──┤						<u> </u>		
S18 049-5	2659677.59	6511155.835	23.763	RE Wall 7	ELHO	21/03/2018	1.81	1.34	34.7	2.7	3.6	204	204	204	204	204		Р		
S18 049-6	2659705.978	6511156.507	23.88	RE Wall 7	ELHO	21/03/2018	1.78	1.33	33.6	2.7	5.9	204	204	204	204	204		Р		
510 049-0	2009/00.9/6	0011100.00/	23.00	RE Wall /	ELHU	21/03/2018	1.80	1.34	33.6	2.7	5.0	204	204	204	204	204		F		
S18 049-9	2659688.419	6511159.84	27.076	RE Wall 7	ELHO	21/03/2018	1.78	1.32	35.0	2.7	5.0	204	204	204	204	204		Р		
							1.78	1.32	35.0	2.7	5.2	┝──┤						┢────┘		
S18 050-3	2659573.941	6510903.975	17.659	Shear Key 2	ELHO	22/03/2018	1.84 1.84	1.42 1.42	29.0 29.0	2.7 2.7	6.1 6.0	204	204	204	204	204		Р		

0
GEOTECHNICS

Earth Works	T&T Job #:	21854.0031	Entered By:
NZS 4407:1991 Field water content and field dry de	nsity using a nuclear densom	leter	Checked By:

Test 4.2.1 Direct Transmission Mode

URN	Easting	Northing	RL	Location	Tech.	Date	Nuclear Wet Density (t/m ³ )	Oven Dry Density (t/m3)	Oven Moisture content (%)	Solid Density (t/m3) assumed	Oven Calculated Air Voids (%)		Shear Strength (kPa) (UTP = Unable to penetrate)				Re - Test (Y)	pass / fail Specification > 140 kPa and < 10 % Air Voids)
												Test 1	Test 2	Test 3	Test 4			
S18 050-4	2659697.9	6511158.69	24.674	RE Wall 7	ELHO	22/03/2018	1.80 1.78	1.35 1.34	33.5 33.5	2.7 2.7	5.0 5.8	204	204	204	204	204		Р
S18 050-7	2659691.862	6511152.905	25.082	Shear Key 2	ELHO	22/03/2018	1.84	1.34	34.6	2.7	1.9	204	204	204	204	204		Р
318 030-7	2009091.002	0311132.905	23.062	Shear Key 2	ELHO	22/03/2018	1.84	1.36	34.6	2.7	2.3	204	204	204	204	204		
S18 051-1	2659713.303	6511158.983	26.087	RE Wall 7	ELHO	23/03/2018	1.83 1.82	1.38 1.37	32.7 32.7	2.7 2.7	3.9 4.2	204	204	204	204	204		Р
S18 051-2	2659676.413	6511158.806	25.64	RE Wall 7	ELHO	23/03/2018	1.81	1.36	33.3	2.7	4.2	204	204	204	204	204		Р
318 031-2	2009070.413	0311138.800	23.04	RE Widii 7	ELHO	23/03/2018	1.83	1.38	33.3	2.7	3.2	204	204	204	204	204		
S18 052-3	2659682.413	6511154.274	26.297	RE Wall 7	CBEN	27/03/2018	1.81 1.82	1.35 1.35	34.4 34.7	2.7	3.6 3.3	204	204	204	204	204		Р
				25.00.02	0.051	07/00/00/0	1.82	1.35	34.7	2.7	2.6							
S18 052-4	2659661.994	6511162.216	26.797	RE Wall 7	CBEN	27/03/2018	1.87	1.42	31.5	2.7	2.7	204	204	204	204	204		Р
S18 053-1	2659679.401	6511150.889	27.302	RE Wall 7	CBEN	28/03/2018	1.83	1.39	32.2	2.7	4.1	175	204	204	160	186		Р
							1.82 1.84	1.38 1.39	32.2 32.3	2.7 2.7	4.5 3.8							
S18 053-2	2659695.333	6511145.302	27.129	RE Wall 7	CBEN	28/03/2018	1.82	1.37	32.3	2.7	4.7	160	175	160	204	175		Р
S18 053-3	2659718.295	6511152.884	28.024	RE Wall 7	CBEN	28/03/2018	1.81	1.37	32.2	2.7	5.2	204	204	204	204	204		Р
							1.82 1.82	1.38 1.38	32.2 32.3	2.7 2.7	4.5 4.5							
S18 053-4	2659692.189	6511151.408	27.892	RE Wall 7	CBEN	28/03/2018	1.82	1.36	32.3	2.7	5.4	204	204	204	204	204		Р
S18 054-1	2659693.708	6511148.469	27.905	RE Wall 7	CBEN	29/03/2018	1.87	1.44	29.5	2.7	4.1	204	204	204	204	204		Р
	20000001100		21.000		05211	20/00/2010	1.89	1.46	29.5	2.7	3.0	201	20.	201	201			
S18 054-2	2659667.162	6511158.6	22.652	RE Wall 7	CBEN	29/03/2018	1.86 1.88	1.44 1.45	29.7 29.7	2.7 2.7	4.1 3.4	204	204	204	204	204		Р
649.054.2	2050002 540	6511154 044	20.472		ODEN	20/02/2010	1.84	1.40	31.0	2.7	4.3	204	204	204	204	204		Р
S18 054-3	2659683.548	6511154.841	28.472	RE Wall 7	CBEN	29/03/2018	1.83	1.40	31.0	2.7	4.8	204	204	204	204	204		Р
S18 057-3	2659691.425	6511145.452	28.638	RE Wall 7	CBEN	5/04/2018	1.83	1.41	29.7	2.7	5.6	204	204	204	204	204		Р
							1.83 1.84	1.41 1.42	29.7 29.7	2.7	5.6 5.4							
S18 057-4	2659668.397	6511149.404	28.193	RE Wall 7	CBEN	5/04/2018	1.84	1.42	29.7	2.7	5.3	204	204	204	204	204		Р
S18 057-5	2659654.321	6511164.692	28.743	RE Wall 7	CBEN	5/04/2018	1.84	1.43	29.1	2.7	5.6	204	204	204	204	204		Р
							1.83	1.42 1.38	29.1	2.7 2.7	6.1 6.1							
S18 058-1	2659717.136	6511146.735	28.933	RE Wall 7	CBEN	6/04/2018	1.81 1.83	1.38	30.8 30.8	2.7	5.2	204	204	204	204	204		Р
S18 058-2	2659693.605	6511147.968	29.126	RE Wall 7	CBEN	6/04/2018	1.82	1.40	30.3	2.7	5.8	204	204	204	204	204		Р
0100002	2000000000	3011147.000	20.120		ODEN	5/04/2010	1.81	1.39	30.3	2.7	6.3	204	204	204	204	204		· · ·
S18 058-5	2659710.19	6511136.835	28.945	RE Wall 7	CBEN	6/04/2018	1.85 1.85	1.44 1.44	28.1 28.1	2.7 2.7	6.1 6.0	204	204	204	204	204		Р
S18 059-1	2659684.963	6511134.835	29.795	RE Wall 7	CBEN	9/04/2018	1.89	1.49	26.9	2.7	4.9	204	204	204	204	204		Р
510 009-1	2009004.903	0011134.030	29.790	RE Wall /	CDEN	3/04/2018	1.88	1.48	26.9	2.7	5.4	204	204	204	204	204		r
S18 059-4	2659747.704	6510969.321	29.982	Undercut above Rd 2	CBEN	9/04/2018	1.88 1.89	1.41 1.41	33.8 33.8	2.7 2.7	0.4	204	204	204	204	204		Р
040.050.5	0050017.001	0544404 050	00.110	DE 11/1 -	00000	0/04/0010	1.89	1.41	33.8 27.9	2.7	0.1 3.4				001			
S18 059-5	2659617.834	6511191.659	30.448	RE Wall 7	CBEN	9/04/2018	1.90	1.49	27.9	2.7	3.6	204	204	204	204	204		Р
S18 061-4	2659707.327	6511142.48	30.966	RE Wall 7	CBEN	13/04/2018	1.88	1.50	25.4	2.7	6.2	160	204	204	204	193		Р
							1.89	1.51	25.4	2.7	5.7							1

0
GEOTECHNICS

Earth Works	T&T Job #:	21854.0031	Entered By:
NZS 4407:1991 Field water content and field dry de	nsity using a nuclear densom	leter	Checked By:

Test 4.2.1 Direct Transmission Mode

URN	Easting	Northing	RL	Location	Tech.	Date	Nuclear Wet Density (t/m ³ )	Oven Dry Density (t/m3)	Oven Moisture content (%)	Solid Density (t/m3) assumed	Oven Calculated Air Voids (%)		Shear Strength (kPa) (UTP = Unable to penetrate)			Average Shear Strength (kPa)	Re - Test (Y)	pass / fail Specification > 140 kPa and < 10 % Air Voids)
												Test 1	Test 2	Test 3	Test 4			
S18 061-5	2659687.417	6511142.766	30.774	RE Wall 7	CBEN	13/04/2018	1.90 1.90	1.50 1.51	26.2 26.2	2.7 2.7	4.9 4.6	160	160	204	204	182		Р
S18 064-1	2659710.37	6511134.711	31.173	RE Wall 7	ELHO	19/04/2018	1.81	1.36	33.2	2.7	4.5	175	204	182	175	184		Р
S18 064-2	2659676.742	6511146.286	31.087	RE Wall 7	ELHO	19/04/2018	1.82 1.83	1.37 1.40	33.2 30.6	2.7 2.7	4.1 5.0	204	204	175	175	190		Р
							1.83 1.86	1.40 1.42	30.6 31.2	2.7 2.7	5.3 3.4							
S18 065-1	2659708.962	6511132.918	31.192	RE Wall 7	ELHO	20/04/2018	1.86	1.42	31.2	2.7	3.1	204	204	204	204	204		Р
S18 065-2	2659692.393	6511139.74	31	RE Wall 7	ELHO	20/04/2018	1.87 1.87	1.43 1.43	30.5 30.5	2.7 2.7	3.2 3.3	204	204	204	204	204		Р
S18 065-3	2659642.114	6511164.877	31.738	RE Wall 7	ELHO	20/04/2018	1.80 1.81	1.37 1.37	32.0 32.0	2.7 2.7	5.6 5.6	160	190	204	204	190		Р
S18 066-1	2659711.14	6511138.126	31.557	RE Wall 7	SABY	23/04/2018	1.87 1.86	1.44 1.43	29.4 30.2	2.7 2.7	4.1 4.0	204	204	204	204	204		Р
S18 066-2	2659690.153	6511140.535	31.458	RE Wall 7	SABY	23/04/2018	1.85	1.38	34.1	2.7	2.1	204	204	204	204	204		Р
		0511115 700					1.84 1.88	1.41 1.49	30.2 26.1	2.7 2.7	5.1 5.8							Р
S18 066-7	2659673.061	6511145.706	32.213	RE Wall 7	SABY	23/04/2018	1.89 1.88	1.51 1.53	24.8 23.2	2.7 2.7	6.5 7.9	204	204	204	204	204		P
S18 066-8	2659700.257	6511141.657	32.223	RE Wall 7	SABY	23/04/2018	1.89	1.52	23.9	2.7	7.1	204	148	204	204	190		Р
S18 067-1	2659650.352	6511161.335	32.437	RE Wall 7	SABY	24/04/2018	1.89 1.89	1.43 1.44	31.6 31.1	2.7 2.7	1.6 1.7	204	204	204	204	204		Р
S18 067-2	2659649.496	6511134.994	31.662	RE Wall 7	SABY	24/04/2018	1.79 1.80	1.31 1.33	36.2 35.4	2.7 2.7	3.9 3.9	204	204	204	204	204		Р
S18 067-3	2659643.29	6511149.434	31.788	RE Wall 7	SABY	24/04/2018	1.81	1.37	31.7	2.7	5.5	146	160	175	204	171		Р
S18 067-4	2659662.314	6511137.96	31.659	RE Wall 7	SABY	24/04/2018	1.80 1.85	1.38 1.45	30.3 27.5	2.7 2.7	6.8 6.5	140	175	190	204	177	-	Р
							1.83 1.86	1.41 1.41	29.4 31.8	2.7 2.7	6.1 3.0							
S18 069-2	2659688.876	6511129.421	33.611	RE Wall 7	SABY	27/04/2018	1.85	1.40	31.7	2.7	3.6	204	204	204	204	204		Р
S18 069-3	2659591.604	6511206.018	32.471	RE Wall 7	SABY	27/04/2018	1.90 1.87	1.47 1.43	29.0 30.4	2.7 2.7	3.0 3.5	175	190	190	204	190		Р
S18 071-1	2659675.237	6511124.681	33.276	RE Wall 7	ELHO	3/05/2018	1.81 1.82	1.34 1.35	35.2 35.2	2.7 2.7	3.1 2.5	204	204	204	204	204		Р
S18 071-2	2659649.046	6511134.628	32.183	RE Wall 7	ELHO	3/05/2018	1.77	1.28	38.7	2.7	3.1	204	204	204	204	204		Р
S18 072-1	2659657.944	6511129.185	32.243	RE Wall 7	ELHO	4/05/2018	1.77 1.71	1.27 1.20	38.7 42.0	2.7 2.7	3.5 5.0	140	140	190	140	153		Р
							1.79 1.78	1.26 1.32	42.0 35.3	2.7 2.7	0.5 4.6		-					
S18 072-2	2659629.845	6511159.141	32.076	RE Wall 7	ELHO	4/05/2018	1.79	1.32	35.3	2.7	4.5	146	160	175	204	171		Р
S18 073-1	2659659.043	6511131.928	34.582	RE Wall 7	ELHO	7/05/2018	1.81 1.81	1.32 1.32	37.1 37.1	2.7 2.7	2.3 2.1	204	204	204	204	204		Р
S18 073-2	2659640.159	6511145.099	32.178	RE Wall 7	ELHO	7/05/2018	1.79 1.79	1.31 1.31	36.3 36.3	2.7 2.7	3.6 4.0	140	175	190	190	174		Р
S18 073-5	2659651.146	6511151.027	32.108	RE Wall 7	ELHO	7/05/2018	1.81 1.80	1.29 1.29	40.1 40.1	2.7 2.7	0.4	140	140	146	146	143		Р

GEOTECHNICS	23 Morgan Street, Newmark Auckland 1023, New Zealar <b>p.</b> +64 9 356 3510 <b>w.</b> www.geotechnics.co.nz				Earth Works T&T Job #: 21854.0031 NZS 4407:1991 Field water content and field dry density using a nuclear densometer Test 4.2.1 Direct Transmission Mode NZGS August 2001 Guidelines for hand held shear vane test.										Entered By: Checked By:			
URN	Easting	Northing	RL	Location	Tech.	Date	Nuclear Wet Density (t/m ³ )	Oven Dry Density (t/m3)	Oven Moisture content (%)	Solid Density (t/m3) assumed	Calculated Air Voids (%)	Shear Strength (kPa) (UTP = Unable to penetrate) Test 1 Test 2 Test 3 Test 4			Average Shear Strength (kPa)	Re - Test (Y)	pass / fail Specification > 140 kPa and < 10 % Air Voids)	
S18 074-4	2659704.085	6511117.21	34.934	RE Wall 7	ELHO	8/05/2018	1.82 1.84	1.36 1.38	33.4 33.4	2.7 2.7	4.0 3.0	204	204	204	190	201		Р
S18 075-1	2659670.106	6511125.133	34.812	RE Wall 7	ELHO	9/05/2018	1.72 1.75	1.28 1.30	34.5 34.5	2.7 2.7	8.4 7.0	204	204	204	204	204		Р
S18 075-2	2659639.98	6511138.976	33.62	RE Wall 7	ELHO	9/05/2018	1.78 1.79	1.34 1.35	32.8 32.8	2.7 2.7	6.6 6.0	204	204	204	204	204		Р

	3 Morgan Street, Newmai uckland 1023, New Zealc . +64 9 356 3510 . www.geotechnics.co.nz	and					Test 4.2.1 Dir	Earth Works 1 Field water cont ect Transmission I 2001 Guidelines f	Mode	ry density usir	•			4.0031				Entered By: Checked By:
URN	Easting	Northing	RL	Location			Density (t/m3) Moisture (t/m3) Calculated (UTP = Unable to penet				Density (t/m3) Moisture (t/m3)					Average Shear Strength (kPa)	Re - Test (Y)	pass / fail Specification > 140 kPa and < 10 % Air Voids)
												Test 1	Test 2	Test 3	Test 4			
S18 076-2	2659623.402 6511155.914 35.341 RE Wall 7	ELHO	10/05/2018	1.81	1.35	33.8	2.7	4.2	204	204	204	204	204		Р			
0100102	2000020.102	0011100.011	00.011		22.10	10/00/2010	1.81	1.35	33.8	2.7	4.4	201	201	201	201	-0.		· · · · · · · · · · · · · · · · · · ·
S18 076-3	2659774.636	6511009.644	34.587	Undercut above wall 6	ELHO	10/05/2018	1.85	1.46	27.2	2.7	6.4	204	204	204	204	204		Р
							1.87	1.47	27.2	2.7	5.4							ļ]
S18 076-5	2659782.893	6511013.892	35.757	Undercut above wall 6	ELHO	10/05/2018	1.89	1.39	35.7	2.7	0.0	140	160	204	204	177		Р
							1.90	1.40	35.7	2.7	0.0							
S18 077-1	2659644.19	6511134.051	35.665	RE Wall 7	ELHO	11/05/2018	1.84	1.36	35.4	2.7	1.6	204	204	204	204	204		Р
	-				-		1.83 1.84	1.35 1.41	35.4 30.0	2.7 2.7	1.9 5.2							
S18 078-2	2659738.498	6511004.974	34.007	Undercut above wall 6	ELHO	15/05/2018	1.84	1.41	30.0	2.7	5.2	204	204	204	204	204		Р
							1.76	1.29	35.9	2.7	5.6							
S18 079-1	2659628.004	6511139.184	35.493	RE Wall 7	ELHO	16/05/2018	1.76	1.29	35.9	2.7	5.7	146	160	160	204	168		Р
							1.80	1.34	34.6	2.7	4.3							_
S18 079-3	2659638.497	6511127.086	35.283	RE Wall 7	ELHO	16/05/2018	1.79	1.33	34.6	2.7	4.7	175	175	204	204	190		Р
S18 081-1	2659822.013	6511089.67	32.13	undercut end of rd 4	ELHO	21/05/2018	1.79	1.29	39.0	2.7	1.9	140	140	175	204	165		Р
516061-1	2039022.013	0511009.07	32.13	undercul end of ra 4	ELHO	21/05/2018	1.78	1.28	39.0	2.7	2.6	140	140	1/5	204	105		
S18 084-4	2659814.984	6511090.657	33.044	undercut end of rd 4	ELHO	29/05/2018	1.79	1.31	36.3	2.7	3.8	204	146	146	160	164		Р
510 004-4	2039014.904	0311030.037	55.044		LLIIO	23/03/2010	1.79	1.32	36.3	2.7	3.6	204	140	140	100	104		i .
S18 085-1	2659804.043	6511090.924	32,799	undercut end of rd 4	ELHO	30/05/2018	1.80	1.38	30.6	2.7	6.8	148	162	162	207	170		Р
0.0000.	200000 110 10	5011000.024	02.100		220	50,00,2010	1.80	1.38	30.6	2.7	6.8							· · · · · · · · · · · · · · · · · · ·
S18 106-1	2659794.319	6511045.538	36.375	Super Lot	CBEN	4/07/2018	1.76	1.25	40.5	2.7	3.1	162	148	148	162	155		Р
					Super Lot CBEN 4/07/		1.74	1.24	40.5	2.7	4.2	162	140	1-+0				ļ]
S18 107-2	S18 107-2 2659803.887 6511060.041 35.583		060.041 35.583 Super Lot CBEN	5/07/2018	1.76	1.31	34.9	2.7	6.1	148	148	148	148	177	162	159		Р
							1.76	1.30	34.9	2.7	6.2					1		1

+	+	+	+	+ +	+	
+	+	+	+	+ +	+	
+	+	+	+	+ +	+	
+	+	+	+	+ +	+	
*	+	+	+	+ +	+	
+	+	+	+	+ +	+	
	+	+	+	+ +	+	
	1	1	1	1.1	1	
+	+	+	+	+ +	+	
+	+	+	+	+ +	+	
+	+	+	+	+ +	+	
+	+	+	+	+ +	+	
+	+	+	+	+ +	+	
4	+	+	+	+ +	+	
*	+	+	+	+ +	+	
+	+	+	+	+ +	+	
	+			+ +		
	1.1			1.1		
+	+	+	+	+ +	+	
-	+	+	+	+ +	+	
+	+	+	+	+ +	+	
+	+	+	+	+ +	+	
+	+	+	+	+ +	+	
+	+	+	+	+ +	+	
					1	
+	+	+	+	+ +	+	
•	+	+	+	+ +	+	
+	+	+	Ŧ	+ +	+	
+	+	+	+	+ +	+	
+	+	+	+	+ +	+	
			Τ.	т т -		
+	+	+	+	+ +	+	
	+	+	+	+ +	+	
+	+	+	+	+ +	+	
+	+	+	+	+ +	+	
+	+	+	+	+ +	+	
+	+	+	+	+ +	+	
				+ +		
+	+	+	+	+ +	+	
+	+	+	+	+ +	+	
				+ +		
	Ŧ	т	т	т т	Ŧ	
+	+	+	+	+ +	+	
-	+	+	+	+ +	+	
+	+	+	+	+ +	+	
+	+	+	+	+ +	+	
*	+	+	+	+ +	+	
+	+	+	+	+ +	+	
	Ŧ	1	1	. +	т,	
+	+	+	+	+ +	+	
+	+	+	+	+ +	+	
		-	-			
+	+	+	+	+ +	+	
+	+	+	+	+ +	+	
			5	L .	1	
+	+	+	+	+ +	+	
+	+	+	+	+ +	+	
	+	+	+	+ +	4	
	Ŧ	1	1	. +	т	
+	+	+	+	+ +	+	
4	+	+	+	+ +	+	
				. 1	1	
+	+	+	+	+ +	+	
+	+	+	+	+ +	+	
+	+	+	+	+ +	+	
•	+	+	+	+ +	+	
		+	+	+ +	1	
*	+	т	1	. +	Ŧ	
+	+	+	+	+ +	+	
	+	+	+	+ +	+	
					1	
+	+	+	+	+ +	+	
+	+	+	+	+ +	+	
+	+	+	+	+ +	+	
	+	+	+	+ +	+	
www.tonkintaylor.co.nz	+	+	+	+ +	4	
,	1	1	1			
+	+	+	+	+ +	+	
+	+	+	+	+ +	+	
+	· +	+	+	+ +	+	6

+ +

+ +